Spectral norm of random matrices

Abstract

In this paper, we present a new upper bound for the spectral norm of symmetric random matrices with independent (but not necessarily identical) entries. Our results improve an earlier result of Füredi and Komlós.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    N. Alon: Spectral techniques in graph algorithms, in: LATIN’98: theoretical informatics (Campinas, 1998), 206–215; Lecture Notes in Comput. Sci., 1380, Springer, Berlin, 1998.

    Google Scholar 

  2. [2]

    N. Alon, M. Krivelevich and V. H. Vu: On the concentration of eigenvalues of random symmetric matrices, Israel J. Math. 131 (2002), 259–267.

    Article  MathSciNet  MATH  Google Scholar 

  3. [3]

    Z. Füredi and J. Komlós: The eigenvalues of random symmetric matrices, Combinatorica 1(3) (1981), 233–241.

    Article  MathSciNet  MATH  Google Scholar 

  4. [4]

    M. Krivelevich and V. H. Vu: Approximating the independence number and the chromatic number in expected polynomial time, J. Comb. Optim. 6(2) (2002), 143–155.

    Article  MathSciNet  MATH  Google Scholar 

  5. [5]

    M. L. Mehta: Random matrices, Second edition, Academic Press, Inc., Boston, MA, 1991.

    MATH  Google Scholar 

  6. [6]

    E. Wigner: On the distribution of the roots of certain symmetric matrices, The Annals of Mathematics 67 (1958), 325–327.

    Article  MathSciNet  Google Scholar 

  7. [7]

    A. Soshnikov: Universality at the edge of the spectrum in Wigner random matrices, Comm. Math. Phys. 207(3) (1999), 697–733.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Van H. Vu.

Additional information

Research supported by an NSF CAREER award and by an Alfred P. Sloan fellowship.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vu, V.H. Spectral norm of random matrices. Combinatorica 27, 721–736 (2007). https://doi.org/10.1007/s00493-007-2190-z

Download citation

Mathematics Subject Classification (2000)

  • 05D40
  • 15A52