Connected but not path-connected subspaces of infinite graphs

Abstract

Solving a problem of Diestel [9] relevant to the theory of cycle spaces of infinite graphs, we show that the Freudenthal compactification of a locally finite graph can have connected subsets that are not path-connected. However we prove that connectedness and path-connectedness to coincide for all but a few sets, which have a complicated structure.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    M. A. Armstrong: Basic Topology, Springer-Verlag, 1983.

  2. [2]

    H. Bruhn: The cycle space of a 3-connected locally finite graph is generated by its finite and infinite peripheral circuits, J. Combin. Theory (Series B) 92 (2004), 235–256.

    MATH  Article  MathSciNet  Google Scholar 

  3. [3]

    H. Bruhn and R. Diestel: Duality in infinite graphs, Comb., Probab. Comput. 15(1–2) (2006), 75–90.

    MATH  Article  MathSciNet  Google Scholar 

  4. [4]

    H. Bruhn, R. Diestel and M. Stein: Cycle-cocycle partitions and faithful cycle covers for locally finite graphs, J. Graph Theory 50 (2005), 150–161.

    MATH  Article  MathSciNet  Google Scholar 

  5. [5]

    H. Bruhn and M. Stein: MacLane’s planarity criterion for locally finite graphs, J. Combin. Theory (Series B) 96(2) (2006), 225–239.

    MATH  Article  MathSciNet  Google Scholar 

  6. [6]

    H. Bruhn and M. Stein: On end degrees and infinite circuits in locally finite graphs, Combinatorica 27(3) (2007), 269–291.

    MATH  Article  MathSciNet  Google Scholar 

  7. [7]

    H. Bruhn and X. Yu: Hamilton cycles in infinite planar graphs, see Chapter 6 of H. Bruhn, Infinite circuits in locally finite graphs, PhD thesis, Universität Hamburg, 2005.

  8. [8]

    D. I. Cartwright, P. M. Soardi and W. Woess: Martin and end compactifications for nonlocally finite graphs, Trans. Am. Math. Soc. 338 (1993), 679–693.

    MATH  Article  MathSciNet  Google Scholar 

  9. [9]

    R. Diestel: The cycle space of an infinite graph, Comb., Probab. Comput. 14 (2005), 59–79.

    MATH  Article  MathSciNet  Google Scholar 

  10. [10]

    R. Diestel: Graph Theory, 3rd edition, Springer-Verlag, 2005. Electronic edition available at: http://www.math.uni-hamburg.de/home/diestel/books/graph.theory.

  11. [11]

    R. Diestel and D. Kühn: Graph-theoretical versus topological ends of graphs, J. Combin. Theory (Series B) 87 (2003), 197–206.

    MATH  Article  Google Scholar 

  12. [12]

    R. Diestel and D. Kühn: On infinite cycles I, Combinatorica 24(1) (2004), 68–89.

    Article  Google Scholar 

  13. [13]

    R. Diestel and D. Kühn: On infinite cycles II, Combinatorica 24(1) (2004), 91–116.

    Article  MathSciNet  Google Scholar 

  14. [14]

    R. Diestel and D. Kühn: Topological paths, cycles and spanning trees in infinite graphs; Europ. J. Combin. 25(6) (2004), 835–862.

    MATH  Article  Google Scholar 

  15. [15]

    H. Freudenthal: Über die Enden topologischer Räume und Gruppen, Math. Zeitschr. 33 (1931), 692–713.

    MATH  Article  MathSciNet  Google Scholar 

  16. [16]

    D. W. Hall and G. L. Spencer: Elementary Topology, John Wiley, New York, 1955.

    MATH  Google Scholar 

  17. [17]

    D. König: Theorie der endlichen und unendlichen Graphen, Akademische Verlagsgesellschaft, 1936.

  18. [18]

    N. Polat: Ends and multi-endings I, J. Combin. Theory (Series B) 67 (1996), 86–110.

    MATH  Article  MathSciNet  Google Scholar 

  19. [19]

    M. Stein: Arboricity and tree-packing in locally finite graphs, J. Combin. Theory (Series B) 96(2) (2006), 302–312.

    MATH  Article  Google Scholar 

  20. [20]

    M. Stein: Forcing highly connected subgraphs, J. Graph Theory 54(4) (2007), 331–349.

    MATH  Article  MathSciNet  Google Scholar 

  21. [21]

    W. Woess: Random walks on infinite graphs and groups, Cambridge University Press, 2002.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Angelos Georgakopoulos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Georgakopoulos, A. Connected but not path-connected subspaces of infinite graphs. Combinatorica 27, 683–698 (2007). https://doi.org/10.1007/s00493-007-2188-6

Download citation

Mathematics Subject Classification (2000)

  • 05C10