Complete partitions of graphs

Abstract

A complete partition of a graph G is a partition of its vertex set in which any two distinct classes are connected by an edge. Let cp(G) denote the maximum number of classes in a complete partition of G. This measure was defined in 1969 by Gupta [19], and is known to be NP-hard to compute for several classes of graphs. We obtain essentially tight lower and upper bounds on the approximability of this problem. We show that there is a randomized polynomial-time algorithm that given a graph G with n vertices, produces a complete partition of size Ω(cp(G)/√lgn). This algorithm can be derandomized.

We show that the upper bound is essentially tight: there is a constant C > 1, such that if there is a randomized polynomial-time algorithm that for all large n, when given a graph G with n vertices produces a complete partition into at least C·cp(G)/√lgn classes, then NP ⊆ RTime(n O(lg lg n)). The problem of finding a complete partition of a graph is thus the first natural problem whose approximation threshold has been determined to be of the form Θ((lgn)c) for some constant c strictly between 0 and 1.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    S. Arora and C. Lund: Hardness of approximations, in: D. Hochbaum, editor, Approximation Algorithms for NP-Hard Problems, PWS Publishing Company, 1996.

  2. [2]

    S. Arora, C. Lund, R. Motwani, M. Sudan and M. Szegedy: Proof verification and hardness of approximation problems, J. ACM 45(3) (1998), 501–555.

    Article  MathSciNet  MATH  Google Scholar 

  3. [3]

    R. Balasubramanian, V. Raman and V. Yegnanarayanan: On the pseudoachromatic number of join of graphs, J. Computer Math. 80 (2003), 1131–1137.

    Article  MathSciNet  MATH  Google Scholar 

  4. [4]

    H. L. Bodlaender: Achromatic number is NP-complete for cographs and interval graphs, Inform. Process. Lett. 31(3) (1989), 135–138.

    Article  MathSciNet  MATH  Google Scholar 

  5. [5]

    V. N. Bhave: On the pseudoachromatic number of a graph, Fund. Math. 102(3) (1979), 159–164.

    MathSciNet  MATH  Google Scholar 

  6. [6]

    B. Bollobás, P. A. Catlin and P. Erdős: Hadwiger’s conjecture is true for almost all graphs, Europ. J. Combin. 1 (1980), 195–199.

    MATH  Google Scholar 

  7. [7]

    B. Bollobás, B. Reed and A. Thomason: An extremal function for the achromatic number, Graph structure theory, 161–165, Contemp. Math. 147, AMS 1993.

    Google Scholar 

  8. [8]

    N. Cairnie and K. J. Edwards: Some results on the achromatic number, J. Graph Theory 26(3) (1997), 129–136.

    Article  MathSciNet  MATH  Google Scholar 

  9. [9]

    N. Cairnie and K. J. Edwards: The achromatic number of bounded degree trees, Discrete Math. 188 (1998), 87–97.

    Article  MathSciNet  MATH  Google Scholar 

  10. [10]

    J. Chuzhoy, S. Guha, E. Halperin, S. Khanna, G. Kortsarz and J. Naor: Tight lower bounds for the asymmetric k-center problem, in Proc. 36th Annual ACM Symposium on Theory of Computing (STOC), 21–27, 2004.

  11. [11]

    D. Dubhashi and D. Ranjan: Balls and bins: A study in negative dependence, Random Structures and Algorithms 13(2) (1998), 99–124.

    Article  MathSciNet  MATH  Google Scholar 

  12. [12]

    K. J. Edwards: The harmonious chromatic number and the achromatic number, in Surveys in Combinatorics 1997, Cambridge University Press, pages 13–47, 1997.

  13. [13]

    K. J. Edwards: Achromatic number versus pseudoachromatic number: A counterexample to a conjecture of Hedetniemi, Discrete Math. 219 (2000), 271–274.

    Article  MathSciNet  MATH  Google Scholar 

  14. [14]

    J. Edmonds and E. L. Johnson: Matching: A well solved class of integer linear programs, in Combinatorial Structures and Their Appl. (Proc. Calgary Internat. Conf.), pages 89–92, 1970.

  15. [15]

    K. J. Edwards and C. J. H. McDiarmid: The complexity of harmonious coloring for trees, Disc. Appl. Math. 57 (1995), 133–144.

    Article  MathSciNet  MATH  Google Scholar 

  16. [16]

    U. Feige: A threshold of ln n for approximating set cover, J. ACM 45(2) (1998), 634–652.

    Article  MathSciNet  MATH  Google Scholar 

  17. [17]

    U. Feige, M. M. Halldórsson, G. Kortsarz and A. Srinivasan: Approximating the domatic number, SIAM J. Computing 32(1) (2002), 172–195.

    Article  MATH  Google Scholar 

  18. [18]

    H. N. Gabow: An efficient reduction technique for degree constrained subgraph and bidirected network flow problems, in Proc. 15th Annual ACM Symposium on Theory of Computing (STOC), pages 448–456, 1983.

  19. [19]

    R. P. Gupta: Bounds on the chromatic and achromatic numbers of complementary graphs, in Recent Progress in Combinatorics Academic Press, New York (1969), pp. 229–235.

    Google Scholar 

  20. [20]

    M. M. Halldórsson: Approximating the minimum maximal independence number, Inform. Process. Lett. 46(4) (1993), 169–172.

    Article  MathSciNet  MATH  Google Scholar 

  21. [21]

    M. M. Halldórsson: An approximation algorithm for complete partitions of regular graphs, Unpublished manuscript, http://www.hi.is/:_mmh/publications.html, February 2004.

  22. [22]

    J. Håstad: Clique is hard to approximate within n 1−ε, Acta Mathematica 182 (1999), 105–142.

    Article  MathSciNet  MATH  Google Scholar 

  23. [23]

    J. Håstad: Some optimal inapproximability results, J. ACM 48 (2001), 798–859.

    Article  MathSciNet  MATH  Google Scholar 

  24. [24]

    E. Halperin and R. Krauthgamer: Polylogarithmic inapproximability, in Proc. 35th Annual ACM Symposium on Theory of Computing (STOC), 585–594, 2003.

  25. [25]

    S. Hedetniemi: Open problems in combinatorial optimization, Webpage at www.cs.clemson.edu/:_hedet/coloring.html, September 1998.

  26. [26]

    C. Lund and M. Yannakakis: On the hardness of approximating minimization problems, J. ACM 41(5) (1994), 960–981.

    Article  MathSciNet  MATH  Google Scholar 

  27. [27]

    A. V. Kostochka: The minimum Hadwiger number for graphs with a given mean degree of vertices, Metody Diskret. Analiz. 38 (1982), 37–58 (in Russian).

    MathSciNet  MATH  Google Scholar 

  28. [28]

    G. Kortsarz: On the hardness of approximating spanners, Algorithmica 30(3) (2001), 432–450.

    MathSciNet  MATH  Google Scholar 

  29. [29]

    G. Kortsarz and R. Krauthgamer: On the approximation of the achromatic number, SIAM Journal of Discrete Math. 14(3) (2000), 408–422.

    Article  MathSciNet  Google Scholar 

  30. [30]

    G. Kortsarz, J. Radhakrishnan and S. Sivasubramanian: Complete partitions of graphs, in Proc. 16th Annual SIAM-ACM Symp. Discrete Algorithms (SODA), pages 860–869, 2005.

  31. [31]

    G. Kortsarz and S. Shende: Approximating the achromatic number problem on bipartite graphs, in Proceedings of 11th European Symposium on Algorithms (Budapest, 2003), Lecture Notes in Computer Science 2832, Springer, Berlin (2003), pp. 385–396.

    Google Scholar 

  32. [32]

    C. J. H. McDiarmid: Achromatic numbers of random graphs, Mathematical Proceedings of Cambridge Philosophical Society 92 (1982), 21–28.

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    C. McDiarmid: On the method of bounded differences, London Mathematical Society Lecture Notes Series 141 (1989), 148–188.

    MathSciNet  Google Scholar 

  34. [34]

    R. Raz: A parallel repetition theorem, SIAM J. Comput. 27(3) (1998), 763–803.

    Article  MathSciNet  MATH  Google Scholar 

  35. [35]

    N. Robertson, P. D. Seymour and R. Thomas: Hadwiger’s conjecture for K 6-free graphs, Combinatorica 13(3) (1993), 279–361.

    Article  MathSciNet  MATH  Google Scholar 

  36. [36]

    E. Sampathkumar and V. N. Bhave: Partition graphs and coloring numbers of a graph, Discorete Math. 16(1) (1976), 57–60.

    Article  MathSciNet  MATH  Google Scholar 

  37. [37]

    V. G. Vizing: On an estimate of the chromatic class of a p-graph, Diskret. Anal. 3 (1964), 25–30 (in Russian).

    MathSciNet  Google Scholar 

  38. [38]

    V. Yegnanarayanan: On pseudocoloring of graphs, Util. Math. 62 (2002), 199–216.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magnús M. Halldórsson.

Additional information

The work reported here is a merger of the results reported in [30] and [21].

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Halldórsson, M.M., Kortsarz, G., Radhakrishnan, J. et al. Complete partitions of graphs. Combinatorica 27, 519 (2007). https://doi.org/10.1007/s00493-007-2169-9

Download citation

Mathematics Subject Classification (2000)

  • 68W25
  • 68W20
  • 68Q17
  • 05C70