On embeddability and stresses of graphs


Gluck has proven that triangulated 2-spheres are generically 3-rigid. Equivalently, planar graphs are generically 3-stress free. We show that already the K 5-minor freeness guarantees the stress freeness. More generally, we prove that every K r+2-minor free graph is generically r-stress free for 1≤r≤4. (This assertion is false for r≥6.) Some further extensions are discussed.

This is a preview of subscription content, access via your institution.


  1. [1]

    L. Asimov and B. Roth: The rigidity of graphs, Trans. Amer. Math. Soc. 245 (1978), 279–289.

    Article  MathSciNet  Google Scholar 

  2. [2]

    L. Asimov and B. Roth: The rigidity of graphs: part II; J. Math. Anal. Appl. 68 (1979), 171–190.

    Article  MathSciNet  Google Scholar 

  3. [3]

    L. Cauchy: Sur les polygones et les polyèdres, Second Memoire, I. Ecole Polytechnique 245 (1813) (= Oeuvres complètes d’Augustin Cauchy 2nd sér., Tome 1 (1905), pp. 26-38).

  4. [4]

    Y. Colin de Verdière: Sur un nouvel invariant des graphes et un critère de planarité, J. Comb. Th., Ser. B 50 (1990), 11–21. (English translation: On a new graph invariant and a criterion for planarity, in Graph Structure Theory (N. Robertson and P. Seymour eds.), Contemp. Math., A.M.S., (1993), pp. 137–147.).

    Article  MATH  Google Scholar 

  5. [5]

    R. Diestel: Graph Theory, Second edition, Springer-Verlag, N.Y., (2000).

    Google Scholar 

  6. [6]

    H. Gluck: Almost all simply connected closed surfaces are rigid, in Geometric topology; Lecture Notes in Math., Vol. 438, pp. 225–239 (1975).

  7. [7]

    G. Kalai: Rigidity and the lower bound theorem, Inven. Math. 88 (1987), 125–151.

    Article  MathSciNet  MATH  Google Scholar 

  8. [8]

    G. Kalai: Algebraic Shifting, Advanced Studies in Pure Math. 33 (2002), 121–163.

    MathSciNet  Google Scholar 

  9. [9]

    K. Kuratowski: Sur le probléme des courbes gauches en topologie, Fund. Math. 15 (1930), 271–283.

    MATH  Google Scholar 

  10. [10]

    K. W. Lee: Generalized stress and motion, in Polytopes: Abstract, Convex and Computational (T. Briztriczky eds.), (1995), 249–271.

  11. [11]

    L. Lovász and A. Schrijver: A Borsuk theorem for antipodal links and a spectral characterization of linklessly embeddable graphs, Proc. Amer. Math. Soc. 126 (1998), 1275–1285.

    Article  MathSciNet  MATH  Google Scholar 

  12. [12]

    W. Mader: Homomorphiesätze für Graphen, Math. Ann. 178 (1968), 154–168.

    Article  MathSciNet  MATH  Google Scholar 

  13. [13]

    W. Mader: 3n–5 edges do force a subdivision of K 5, Combinatorica 18(4) (1998), 569–595.

    Article  MathSciNet  MATH  Google Scholar 

  14. [14]

    E. Nevo: Embeddability and stresses of graphs, arXiv: math.CO/0411009.

  15. [15]

    N. Robertson, P. D. Seymour and R. Thomas: Linkless embeddings of graphs in 3-space, Bull. Amer. Math. Soc. 28 (1993), 84–89.

    Article  MathSciNet  MATH  Google Scholar 

  16. [16]

    Z. Song: The extremal function for K 8 minors, J. Comb. Th., Ser. B 95(2) (2005), 300–317.

    Article  MATH  Google Scholar 

  17. [17]

    E. Steinitz and H. Rademacher: Volgesungen über die Theorie der Polyeder, Berlin-Göttingen, Springer, 1934.

    Google Scholar 

  18. [18]

    W. Whiteley: Vertex splitting in isostatic frameworks, Struc. Top. 16 (1989), 23–30.

    MathSciNet  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Eran Nevo.

Additional information

Supported by an I.S.F. grant.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nevo, E. On embeddability and stresses of graphs. Combinatorica 27, 465–472 (2007). https://doi.org/10.1007/s00493-007-2168-x

Download citation

Mathematics Subject Classification (2000)

  • 52C25
  • 05C83