New Coins From Old: Computing With Unknown Bias

Suppose that we are given a function f : (0, 1)→(0,1) and, for some unknown p∈(0, 1), a sequence of independent tosses of a p-coin (i.e., a coin with probability p of “heads”). For which functions f is it possible to simulate an f(p)-coin? This question was raised by S. Asmussen and J. Propp. A simple simulation scheme for the constant function f(p)≡1/2 was described by von Neumann (1951); this scheme can be easily implemented using a finite automaton. We prove that in general, an f(p)-coin can be simulated by a finite automaton for all p ∈ (0, 1), if and only if f is a rational function over ℚ. We also show that if an f(p)-coin can be simulated by a pushdown automaton, then f is an algebraic function over ℚ; however, pushdown automata can simulate f(p)-coins for certain nonrational functions such as \( f{\left( p \right)} = {\sqrt p } \). These results complement the work of Keane and O’Brien (1994), who determined the functions f for which an f(p)-coin can be simulated when there are no computational restrictions on the simulation scheme.

This is a preview of subscription content, access via your institution.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Elchanan Mossel*.

Additional information

* Supported by a Miller Fellowship.

† Supported in part by NSF Grant DMS-0104073 and by a Miller Professorship.

‡ This work is supported under a National Science Foundation Graduate Research Fellowship.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mossel*, E., Peres†, Y. & With an appendix by Christopher Hillar‡, University of California, Berkeley, 970 Evans Hall #3840, Berkeley, CA 94720-3840, USA, chillar@math.berkeley.edu. New Coins From Old: Computing With Unknown Bias. Combinatorica 25, 707–724 (2005). https://doi.org/10.1007/s00493-005-0043-1

Download citation

Mathematics Subject Classification (2000):

  • 68Q70
  • 14P10
  • 65C50