Skip to main content
Log in

The effects of brightness and prominent colors on outdoor thermal perception in Chongqing, China

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Outdoor thermal comfort has become an important factor affecting human mental and physical health due to rapid urbanization. This study aimed to investigate the influence of brightness and prominent colors on thermal perception in hot summer and cold winter regions. Meteorological measurements were conducted accompanied by subjective thermal and visual questionnaires (n = 2020) during summer and winter. The physiological equivalent temperature (PET) was applied as thermal indices to evaluate the influence of visual conditions on thermal perception. The results showed that (1) the neutral PET is 20.2 °C with a range of 14.8 ~ 25.7 °C in Chongqing and neutral illumination range is 0 ~ 8663 lx. (2) Thermal sensitivity is most great in neutral brightness than bright and too bright groups. The influence of outdoor prominent colors in winter supports hue-heat hypothesis. However, in summer, result only supports the hypothesis under low thermal stress. Both cool and warm colors can reduce the thermal sensitivity of visitors compared to neutral colors (gray and white). (3) The interactions between colors and brightness are more obvious under low thermal stress levels. (4) Thermal perceptions of females are more greatly affected by brightness and prominent colors compared with males. These results could help landscape designers better understand the correlation between the thermal and visual environments and provide a reference for comprehensive designs of urban open spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achsani RA, Wonorahardjo S (2020) Studies on visual environment phenomena of urban areas: A systematic review. IOP Conference Series: Earth Environ Sci 532(1):012016

    Google Scholar 

  • Ainsworth BE, Haskell WL, Herrmann SD et al (2011) Compendium of Physical Activities: a second update of codes and MET values. Med Sci Sports Exerc 43(8):1575–1581

    Article  PubMed  Google Scholar 

  • Akers A, Barton J, Cossey R et al (2012) Visual color perception in green exercise: Positive effects on mood and perceived exertion. Environ Sci Technol 46(16):8661–8666

    Article  ADS  CAS  PubMed  Google Scholar 

  • Allan AC, Garcia-Hansen V, Isoardi G et al (2019) Subjective assessments of lighting quality: A measurement review. Leukos -. J Illum Eng Soc North Am 15:115–126

    Google Scholar 

  • Altunkasa C, Uslu C (2020) Use of outdoor microclimate simulation maps for a planting design to improve thermal comfort. Sustain Cities Soc 57:102137

    Article  Google Scholar 

  • Arnberger A (2006) Recreation use of urban forests: an inter-area comparison. Urban for Urban Green 4(3–4):135–144

    Article  Google Scholar 

  • Atwa S, Ibrahim MG, Muratae R (2020) Evaluation of plantation design methodology to improve the human thermal comfort in hot-arid climatic responsive open spaces. Sustain Cities Soc 59:102198

    Article  Google Scholar 

  • Ballinas M, Barradas VL (2016) Transpiration and stomatal conductance as potential mechanisms to mitigate the heat load in Mexico City. Urban for Urban Green 20:152–159

    Article  Google Scholar 

  • Bellia L, Fragliasso F, Stefanizzi E (2017) Daylit offices: A comparison between measured parameters assessing light quality and users’ opinions. Build Environ 113:92–106

    Article  Google Scholar 

  • Brambilla A, Hu W, Samangouei R et al (2020) How correlated colour temperature manipulates human thermal perception and comfort. Build Environ 177:106929

    Article  Google Scholar 

  • Burkart K, Schneider A, Breitner S et al (2011) The effect of atmospheric thermal conditions and urban thermal pollution on all cause and cardiovascular mortality in Bangladesh. Environ Pollut 159(8–9):2035–2043

    Article  CAS  PubMed  Google Scholar 

  • Chen H (2010) The urban heat island and its impact on heat waves and human health in Shanghai. Int J Biometeorol 54(1):75–84

    Article  Google Scholar 

  • Chen L, Wen Y, Zhang L et al (2015) Studies of thermal comfort and space use in an urban park square in cool and cold seasons in Shanghai. Build Environ 94:644–653

    Article  Google Scholar 

  • Chen T, Pan H, Lu M et al (2021) Effects of tree plantings and aspect ratios on pedestrian visual and thermal comfort using scaled outdoor experiments. Sci Total Environ 801:149527

    Article  ADS  CAS  PubMed  Google Scholar 

  • Chen L, Kántor N, Nikolopoulou M (2022) Meta-analysis of outdoor thermal comfort surveys in different European cities using the RUROS database: The role of background climate and gender. Energy Build 256:111757

    Article  Google Scholar 

  • Cheung PK, Jim CY (2019) Improved assessment of outdoor thermal comfort: 1-hour acceptable temperature range. Build Environ 151:303–317

    Article  Google Scholar 

  • Chinazzo G, Chamilothori K, Wienold J et al (2021) Temperature-color interaction: subjective indoor environmental perception and physiological responses in virtual reality. Hum Factors 63(3):474–502

  • Climate Data for Cities in China (2022) Accessed. http://www.weather.com.cn/

  • Eliasson I, Knez I, Westerberg U et al (2007) Climate and behaviour in a Nordic city. Landsc Urban Plann 82:72–84

    Article  Google Scholar 

  • Fabbri K, Ugolini A, Iacovella A et al (2020) The effect of vegetation in outdoor thermal comfort in archaeological area in urban context. Build Environ 175:106816

    Article  Google Scholar 

  • Geng Y, Hong B, Du M et al (2022) Combined effects of visual-acoustic-thermal comfort in campus open spaces: A pilot study in China’s cold region. Build Environ 209:108658

    Article  Google Scholar 

  • Harry SM, Martina N, Liam PS et al (2023) The effects of manipulating the visual environment on thermal perception: A structured narrative review. J Therm Biol 112:103448

    Google Scholar 

  • He X, Gao W, Wang R et al (2023) Study on outdoor thermal comfort of factory areas during winter in hot summer and cold winter zone of China. Build Environ 228:109883

    Article  Google Scholar 

  • Hirning MB, Isoardi GL, Cowling I (2014) Discomfort glare in open plan green buildings. Energy Build 70:427–440

    Article  Google Scholar 

  • Hodder SG, Parsons K (2007) The effects of solar radiation on thermal comfort. Int J Biometeorol 51(3):233–250

    Article  PubMed  Google Scholar 

  • Ho HN, Iwai D, Yoshikawa Y et al (2014) Combining colour and temperature: a blue object is more likely to be judged as warm than a red object. Sci Rep 4(1):5527

  • Huang T, Li J, Xie Y et al (2017) Simultaneous environmental parameter monitoring and human subject survey regarding outdoor thermal comfort and its odelling. Build Environ 125:502–514

    Article  Google Scholar 

  • ISO, International Standard 7726 (1998) Thermal Environment-Instruments and Method for Measuring Physical Quantities

  • ISO, International Standard 7730 (1994) Moderate Thermal Environments Determination of the PMV and PPD Indices and Specification of the Conditions for Thermal Comfort. International Organization for Standardization, Geneva

    Google Scholar 

  • Kirchhoff T, Ramisch K, Feucht T et al (2022) Visual evaluations of wind turbines: Judgments of scenic beauty or of moral desirability? Landsc Urban Plann 226:104509

    Article  Google Scholar 

  • Kolokotsa D, Gobakis K, Papantoniou S et al (2016) Development of a web based energy management system for University Campuses: The CAMP-IT platform. Energy Build 123:119–135

    Article  Google Scholar 

  • Kumar P, Sharma A (2020) Study on importance, procedure, and scope of outdoor thermal comfort –A review. Sustain Cities Soc 61:102297

    Article  Google Scholar 

  • Lai D, Guo D, Hou Y et al (2014) Studies of outdoor thermal comfort in northern China. Build Environ 77(3):110–118

    Article  Google Scholar 

  • Lam CKC, Loughnan M, Tapper N (2018) Visitors’ perception of thermal comfort during extreme heat events at the royal botanic garden Melbourne. Int J Biometeorol 62:97–112

    Article  PubMed  Google Scholar 

  • Lam CKC, Yang H, Yang X et al (2020) Cross-modal effects of thermal and visual conditions on outdoor thermal and visual comfort perception. Build Environ 186:107297

    Article  Google Scholar 

  • Lechner S, Moosmann C, Wagner A et al (2021) Does thermal control improve visual satisfaction? Interactions between occupants? self-perceived control, visual, thermal, and overall satisfaction. Indoor Air 31:2329–2349

    Article  PubMed  Google Scholar 

  • Lengen C (2015) The effects of colours, shapes and boundaries of landscapes on perception, emotion and mentalising processes promoting health and well-being. Health Place 35:166–177

    Article  PubMed  Google Scholar 

  • Li J, Liu N (2020) The perception, optimization strategies and prospects of outdoor thermal comfort in China: A review. Build Environ 170:106614

    Article  Google Scholar 

  • Luo W, Kramer R, Kompier M et al (2023) Effects of correlated color temperature of light on thermal comfort, thermophysiology and cognitive performance. Build Environ 231:109944

    Article  Google Scholar 

  • Ma X, Tian Y, Du M et al (2021) How to design comfortable open spaces for the elderly? Implications of their thermal perceptions in an urban park. Sci Total Environ 768:144985

    Article  ADS  CAS  PubMed  Google Scholar 

  • Mi J, Hong B, Zhang T et al (2020) Outdoor thermal benchmarks and their application to climate-responsive designs of residential open spaces in a cold region of China. Build Environ 169:106592

    Article  Google Scholar 

  • Mogensen M, English H (1926) The apparent warmth of colors. Am J Psychol 37:427–428

    Article  Google Scholar 

  • Morakinyo TE, Dahanayake KKC, Adegun OB et al (2016) Modelling the effect of tree-shading on summer indoor and outdoor thermal condition of two similar buildings in a Nigerian university. Energy Build 130:721–732

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2006) Thermal comfort in outdoor urban spaces: analysis across different European countries. Build Environ 41(11):1455–1470

    Article  Google Scholar 

  • Niu J, Hong B, Geng Y et al (2020) Summertime physiological and thermal responses among activity levels in campus outdoor spaces in a humid subtropical city. Sci Total Environ 728:138757

    Article  ADS  CAS  PubMed  Google Scholar 

  • Niu J, Xiong J, Qin H et al (2022) Influence of thermal comfort of green spaces on physical activity: Empirical study in an urban park in Chongqing. China Build Environ 219:109168

    Article  Google Scholar 

  • Peel MC, Finlayson BL, Mcmahon TA (2007) Updated world map of the Köppen. Geiger climate classification. Hydrol Earth Syst Sci 11(3):259–263

    Google Scholar 

  • Pierson C, Wienold J, Bodart M (2018) Review of factors influencing discomfort glare perception from daylight. Leukos - J Illum Eng Soc North Am 14:111–148

    Google Scholar 

  • Qin H, Cheng X, Han G et al (2021) How thermal conditions affect the spatial-temporal distribution of visitors in urban parks: a case study in Chongqing. China Urban for Urban Green 66:127393

    Article  Google Scholar 

  • Seeland K, Dübendorfer S, Hansmann R (2009) Making friends in Zurich’s urban forests and parks: the role of public green space for social inclusion of youths from different cultures. For Policy Econ 11(1):10–17

    Article  Google Scholar 

  • Shafavi NS, Zomorodian ZS, Tahsildoost M et al (2020) Occupants visual comfort assessments: A review of field studies and lab experiments. Sol Energy 208:249–274

    Article  ADS  Google Scholar 

  • Spielhofer R, Hunziker M, Kienast F et al (2021) Does rated visual landscape quality match visual features? An analysis for renewable energy landscapes. Landsc Urban Plann 209:104000

    Article  Google Scholar 

  • ASHRAE Standard 55 (2017) Thermal Environmental Conditions for Human Occupancy, (ANSI/ASHRAE Standard), Atlanta. GA

    Google Scholar 

  • Taleghani M, Berardi U (2017) The effect of pavement characteristics on pedestrians’ thermal comfort in Toronto. Urban Clim 24:449–459

    Article  Google Scholar 

  • Wang H, Liu G, Hu S et al (2018) Experimental investigation about thermal effect of colour on thermal sensation and comfort. Energy Build 173:710–718

    Article  Google Scholar 

  • Wei D, Yang L, Bao Z et al (2022) Variations in outdoor thermal comfort in an urban park in the hot-summer and cold-winter region of China. Sustain Cities Soc 77:103535

    Article  Google Scholar 

  • Wu H, Sun X, Wu Y (2020) Investigation of the relationships between thermal, acoustic, illuminous environments and human perceptions. J Build Eng 32:101839

    Article  Google Scholar 

  • Xu M, Hong B, Mi J et al (2018) Outdoor thermal comfort in an urban park during winter in cold regions of China. Sustain Cities so 43:208–220

    Article  Google Scholar 

  • Xu M, Hong B, Jiang R et al (2019) Outdoor thermal comfort of shaded spaces in an urban park in the cold region of China. Build Environ 155:408–420

    Article  Google Scholar 

  • Yang W, Wong NH, Jusuf SK (2013) Thermal comfort in outdoor urban spaces in Singapore. Build Environ 59:426–435

    Article  Google Scholar 

  • Yang J, Yin P, Sun J et al (2019) Heatwave and mortality in 31 major Chinese cities: definition, vulnerability and implications. Sci Total Environ 649:695–702

    Article  ADS  CAS  PubMed  Google Scholar 

  • Yang S, Zhou D, Wang Y et al (2020) Comparing impact of multi-factor planning layouts in residential areas on summer thermal comfort based on orthogonal design of experiments (ODOE). Build Environ 182:107145

    Article  Google Scholar 

  • Yin Q, Cao Y, Sun C (2021) Research on outdoor thermal comfort of high-density urban center in severe cold area. Build Environ 200:107938

    Article  Google Scholar 

  • Zhou Z, Dong L (2023) Experimental investigation of the effect of surgical masks on outdoor thermal comfort in Xiamen. China Build Environ 229:109893

    Article  PubMed  Google Scholar 

  • Zhou Y, Li X, Asrar GR et al (2018) A global record of annual urban dynamics (1992–2013) from nighttime lights. Remote Sens Environ 219:206–220

    Article  ADS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 51978091, 51778077) and the Fundamental Research Funds for the Central Universities (Grant No. 2023CDJKYJH099).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guifeng Han.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 25 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, H., Chen, J., Niu, J. et al. The effects of brightness and prominent colors on outdoor thermal perception in Chongqing, China. Int J Biometeorol (2024). https://doi.org/10.1007/s00484-024-02654-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00484-024-02654-0

Keywords

Navigation