Skip to main content
Log in

Analysis of heatwaves based on the universal thermal climate index and apparent temperature over mainland Southeast Asia

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Heatwaves have caused significant damage to human health, infrastructure, and economies in recent decades, and the occurrences of heatwaves are becoming more frequent and severe across the globe under climate change. The previous studies on heatwaves have primarily focused on air temperature, neglecting other variables like wind speed, relative humidity, and radiation, which could lead to a serious underestimation of the adverse effects of heatwaves. To address this issue, this study proposed to the use of more sophisticated thermal indices, such as universal thermal climate index (UTCI) and apparent temperature (AT), to define heatwaves and carry out a comprehensive heatwave assessment over mainland southeast Asia (MSEA) from 1961 to 2020. The traditional temperature-based method was also compared. The results of the study demonstrate that the annual maximum temperature in heatwave days (HWA) and the annual average temperature in heatwave days (HWM) are significantly underestimated if only air temperature is considered. However, UTCI and AT tend to predict a lower frequency of yearly heatwave occurrences and shorter durations. Trend analysis indicates a general increase in heatwave occurrences across MSEA under all thermal indices in the past six decades, particularly in the last 30 years. This study’s approach and findings provide a holistic view of heatwave characteristics based on thermal indices and highlight the risk of intensified heat stress during heatwaves in MSEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

Code availability

The code used to support the findings of this study are available from the corresponding author upon request.

References

  • Adnan MSG, Dewan A, Botje D, Shahid S, Hassan QK (2022) Vulnerability of Australia to heatwaves: a systematic review on influencing factors, impacts, and mitigation options. Environ Res 213:113703

    CAS  Google Scholar 

  • Ahmadnezhad E, Holakouie Naieni K, Ardalan A, Mahmoodi M, Yunesian M, Naddafi K, Mesdaghinia AR (2013) Excess mortality during heat waves, Tehran Iran: an ecological time-series study. J Res Health Sci 13(1):24–31

    Google Scholar 

  • Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekr J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M and Vazquez‐Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res Atmos 111(D5)

  • Australian Bureau of Meteorology (ABM) About the WBGT and Apparent Temperature Indices Bureau of Meteorology, Commonwealth of Australia, Melbourne, Website [Online]. Australian Bureau of Meteorology (2009)

  • Baig MA, Waheed S, Mian A, Hussain E (2015) Unforgiving heat wave deaths in the largest metropolitan city of Pakistan: lessons learned. Eurasian J Emerg Med 14:209

    Google Scholar 

  • Banc S, Croitoru AE, David NA, Scripcă AS (2020) Changes detected in five bioclimatic indices in large Romanian cities over the period 1961–2016. Atmosphere 11(8):819

    Google Scholar 

  • Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, García-Herrera R (2011) The hot summer of 2010: redrawing the temperature record map of Europe. Science 332(6026):220–224

    CAS  Google Scholar 

  • Błażejczyk K, Matzarakis A (2007) Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geogr Pol 80(1):63–82

    Google Scholar 

  • Błażejczyk K, Epstein Y, Jendritzky G, Staiger H, Tinz B (2012) Comparison of UTCI to selected thermal indices. Int J Biometeorol 56(3):515–535

    Google Scholar 

  • Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013) An introduction to the universal thermal climate index (UTCI)

  • Błażejczyk K, Jendritzky G, Bröde P, Fiala D, Havenith G, Epstein Y, Psikuta A, Kampmann B (2013) An introduction to the universal thermal climate index (UTCI). Geographia Polonica 86(1):5–10

    Google Scholar 

  • Boland J, Ridley B, Brown B (2008) Models of diffuse solar radiation. Renew Energy 33(4):575–584

    CAS  Google Scholar 

  • Bouchama A (2004) The 2003 European heat wave. Intensive Care Med 30(1):1–3

    Google Scholar 

  • Bröde P, Fiala D, Błażejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeorol 56(3):481–494

    Google Scholar 

  • Brouillet A, Joussaume S (2019) Investigating the role of the relative humidity in the co-occurrence of temperature and heat stress extremes in CMIP5 projections. Geophys Res Lett 46(20):11435–11443

    Google Scholar 

  • Campbell S, Remenyi TA, White CJ, Johnston FH (2018) Heatwave and health impact research: a global review. Health Place 53:210–218

    Google Scholar 

  • Casanueva A, Kotlarski S, Fischer AM, Flouris AD, Kjellstrom T, Lemke B, ... Liniger MA (2020) Escalating environmental summer heat exposure—a future threat for the European workforce. Reg Environ Chang 20(2):1–14

  • CDS (2022) Copernicus climate data Store. https://cds.climate.copernicus.eu/cdsapp. Accessed 25 Dec 2022

  • Choi G (2018) Spatio-temporal patterns and long-term trends of apparent temperature in Jeju Island, Korea. J Assoc Korean Geographers 7(1):29–41

    Google Scholar 

  • Christidis N, Manomaiphiboon K, Ciavarella A, Stott PA (2018) The hot and dry April of 2016 in Thailand. Bull Amer Meteor Soc 99(1):128–132. https://doi.org/10.1175/BAMS-D-17-0118.1

    Article  Google Scholar 

  • de Freitas CR, Grigorieva EA (2015) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59(1):109–120

    Google Scholar 

  • Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, ... Vitart F (2011) The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597

  • Di Napoli C, Pappenberger F, Cloke HL (2018) Assessing heat-related health risk in Europe via the universal thermal climate index (UTCI). Int J Biometeorol 62(7):1155–1165

    Google Scholar 

  • Di Napoli C, Hogan RJ, Pappenberger F (2020) Mean radiant temperature from global-scale numerical weather prediction models. Int J Biometeorol 64(7):1233–1245

    Google Scholar 

  • Ding T, Qian W, Yan Z (2010) Changes in hot days and heat waves in China during 1961–2007. Int J Climatol 30(10):1452–1462

    Google Scholar 

  • Dodla VB, Satyanarayana GC, Desamsetti S (2017) Analysis and prediction of a catastrophic Indian coastal heat wave of 2015. Nat Hazards 87(1):395–414

    Google Scholar 

  • Dole R, Hoerling M, Perlwitz J, Eischeid J, Pegion P, Zhang T, Quan XW, Xu T, Murray D (2011) Was there a basis for anticipating the 2010 Russian heat wave? Geophys Res Lett 38(6):L06702. https://doi.org/10.1029/2010GL046582

    Article  Google Scholar 

  • Fan PY, Chun KP, Mijic A, Mah DNY, He Q, Choi B, ... Yetemen O (2022) Spatially-heterogeneous impacts of surface characteristics on urban thermal environment, a case of the Guangdong-Hong Kong-Macau Greater Bay Area. Urban Clim 41:101034

  • Ge Q, Kong Q, Xi J, Zheng J (2017) Application of UTCI in China from tourism perspective. Theoret Appl Climatol 128(3):551–561

    Google Scholar 

  • Gecker J, Chuwiruch N (2016) Thailand is used to hot Aprils, but not this hot. Bangkok AP news. https://apnews.com/42c7c080f86644168102ceeea105ddd0/thailand-used-hot-aprils-not-hot

  • Gu S, Huang C, Bai L, Chu C, Liu Q (2016) Heat-related illness in China, summer of 2013. Int J Biometeorol 60(1):131–137

    Google Scholar 

  • Havenith G (2002) Interaction of clothing and thermoregulation. Exog Dermatol 1(5):221–230

    Google Scholar 

  • Havenith G, Fiala D (2011) Thermal indices and thermophysiological modeling for heat stress. Compr Physiol 6(1):255–302

    Google Scholar 

  • Heo S, Bell ML, Lee JT (2019) Comparison of health risks by heat wave definition: applicability of wet-bulb globe temperature for heat wave criteria. Environ Res 168:158–170

    Google Scholar 

  • Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz‐Sabater J, ... Thépaut JN (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146(730):1999–2049

  • Hu YM, Yang CX, Liang ZM, Luo XY, Huang YX, Tang C (2022) A non-parametric approach for change-point detection of multi-parameters in time-series data. J Environ Inf 42(1):65–74

    Google Scholar 

  • Hwang Y, Lee BS, Kim HY, Kim J, Kim H, Shin HS (2006) Communication, ocean, and meteorological satellite orbit determination analysis considering maneuver scheme. In AIAA/AAS Astrodynamics Specialist Conference and Exhibit (p. 6668)

  • Imada Y, Shiogama H, Takahashi C, Watanabe M, Mori M, Kamae Y, Maeda S (2018) 19 Climate change increased the likelihood of the 2016 heat extremes in Asia. Bull Am Meteorol Soc 99(1):S97–S101

    Google Scholar 

  • IPCC (2021) Summary for policymakers. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, V. Masson-Delmotte, P. Zhai, and A. Pirani, et al., eds. (Cambridge University Press), pp. 1–41

  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, ... Yiou P (2014) EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change 14(2):563–578

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428

    Google Scholar 

  • Jendritzky G (1990) Methodik zur Räumlichen Bewertung der Thermischen Komponente im Bioklima des Menschen: Fortgeschriebenes Klima-Michel-Modell. na

  • Jones PW (1999) First- and second-order conservative remapping schemes for grids in spherical coordinates. Mon Weather Rev 127(9):2204–2210

    Google Scholar 

  • Jun Y, Liu HZ, Ou CQ, Lin GZ, Yan D, Qin Z, Shen JC, Chen PY (2013) Impact of heat wave in 2005 on mortality in Guangzhou, China. Biomed Environ Sci 26(8):647–654

    Google Scholar 

  • Kaiser R, Le Tertre A, Schwartz J, Gotway CA, Daley WR, Rubin CH (2007) The effect of the 1995 heat wave in Chicago on all-cause and cause-specific mortality. Am J Public Health 97(Supplement_1):S158–S162

    Google Scholar 

  • Kántor N, Unger J (2011) The most problematic variable in the course of human-biometeorological comfort assessment—the mean radiant temperature. Cent Eur J Geosci 3(1):90–100

    Google Scholar 

  • Katsouyanni K, Trichopoulos D, Zavitsanos X, Touloumi G (1988) The 1987 Athens heatwave. Lancet 2:573

    CAS  Google Scholar 

  • Kravchenko J, Abernethy AP, Fawzy M, Lyerly HK (2013) Minimization of heatwave morbidity and mortality. Am J Prev Med 44(3):274–282

    Google Scholar 

  • Li XX (2020) Heat wave trends in Southeast Asia during 1979–2018: the impact of humidity. Sci Total Environ 721:137664

    CAS  Google Scholar 

  • Li N, Ma J, Liu F, Zhang Y, Ma P, Jin Y, Zheng ZJ (2021) Associations of apparent temperature with acute cardiac events and subtypes of acute coronary syndromes in Beijing, China. Sci Rep 11(1):1–12

    Google Scholar 

  • Lowe D, Ebi KL, Forsberg B (2011) Heatwave early warning systems and adaptation advice to reduce human health consequences of heatwaves. Int J Environ Res Public Health 8(12):4623–4648

    Google Scholar 

  • Lyon C, Saupe EE, Smith CJ, Hill DJ, Beckerman AP, Stringer LC, ... Aze T (2022) Climate change research and action must look beyond 2100. Glob Chang Biol 28(2):349–361

  • Mackey C (2022) Calculate UTCI. https://gist.github.com/chriswmackey/b852dd9e01f79402d8a7b355f97b84c8. Accessed 24 Mar 2022

  • Mann HB (1945) Nonparametric Tests Against Trend. Econometrica 13(3):245–259. https://doi.org/10.2307/1907187

    Article  Google Scholar 

  • Masterton JM, Richardson FA (1979) Humidex: a method of quantifying human discomfort due to excessive heat and humidity. Environment Canada, Atmospheric Environment, Downsview, Ontario

    Google Scholar 

  • McGregor GR, Ferro CAT, Stephenson DB (2005) Projected changes in extreme weather and climate events in Europe. In: Kirch W, Bertollini R, Menne B (eds) Extreme weather events and public health responses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-28862-7_2

  • Mukhopadhyay B, Weitz CA, Das K (2021) Indoor heat conditions measured in urban slum and rural village housing in West Bengal, India. Build Environ 191:107567

    Google Scholar 

  • Muñoz-Sabater J, Dutra E, Agustí-Panareda A, Albergel C, Arduini G, Balsamo G, ... Thépaut JN (2021) ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst Sci Data 13(9):4349–4383

  • Naboni E, Meloni M, Coccolo S, Kaempf J, Scartezzini JL (2017) An overview of simulation tools for predicting the mean radiant temperature in an outdoor space. Energy Procedia 122:1111–1116

    Google Scholar 

  • Nairn JR, Fawcett RJ (2015) The excess heat factor: a metric for heatwave intensity and its use in classifying heatwave severity. Int J Environ Res Public Health 12(1):227–253

    Google Scholar 

  • Nissan H, Burkart K, Coughlan de Perez E, Van Aalst M, Mason S (2017) Defining and predicting heat waves in Bangladesh. J Appl Meteorol Climatol 56(10):2653–2670

    Google Scholar 

  • Ono M, Tonouchi M (2014) Estimation of wet-bulb globe temperature using generally measured meteorological indices. Jpn J Biometeor 50(4):147–157

    Google Scholar 

  • Parsons K (2002) Human thermal environments: the effects of hot, moderate, and cold environments on human health, comfort, and performance, 3rd edn. CRC Press, Boca Raton, FL. https://doi.org/10.1201/b16750

  • Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydrol Earth Syst Sci 11(5):1633–1644

    Google Scholar 

  • Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26(13):4500–4517. https://doi.org/10.1175/jcli-d-12-00383.1

    Article  Google Scholar 

  • Perkins-Kirkpatrick SE, Lewis SC (2020) Increasing trends in regional heatwaves. Nat Commun 11(1):1–8

    Google Scholar 

  • Reda I, Andreas A (2004) Solar position algorithm for solar radiation applications. Sol Energy 76(5):577–589

    Google Scholar 

  • Rey G, Jougla E, Fouillet A, Pavillon G, Bessemoulin P, Frayssinet P, Clavel J, Hémon D (2007) The impact of major heat waves on all-cause and cause-specific mortality in France from 1971 to 2003. Int Arch Occup Environ Health 80(7):615–626

    Google Scholar 

  • Robine JM, Cheung SLK, Le Roy S, Van Oyen H, Griffiths C, Michel JP, Herrmann FR (2008) Death toll exceeded 70,000 in Europe during the summer of 2003. CR Biol 331(2):171–178

    Google Scholar 

  • Rooney C, McMichael AJ, Kovats RS, Coleman MP (1998) Excess mortality in England and Wales, and in greater London, during the 1995 heatwave. J Epidemiol Community Health 52(8):482–486

    CAS  Google Scholar 

  • Rothfusz LP, Headquarters NSR (1990) The heat index equation (or, more than you ever wanted to know about heat index). Fort Worth, Texas: National Oceanic and Atmospheric Administration, National Weather Service, Office of Meteorology, 9023

  • Sartor F, Snacken R, Demuth C, Walckiers D (1995) Temperature, ambient ozone levels, and mortality during summer, 1994 in Belgium. Environ Res 70(2):105–113

    CAS  Google Scholar 

  • Sen PK (1968) Estimates of the regression coefficient based on Kendall’s tau. J Am Stat Assoc 63(324):1379–1389

    Google Scholar 

  • Sheffield J, Goteti G, Wood EF (2006) Development of a 50-year high-resolution global dataset of meteorological forcings for land surface modeling. J Clim 19(13):3088–3111

    Google Scholar 

  • Spangler KR, Liang S, Wellenius GA (2022) Wet-bulb globe temperature, universal thermal climate index, and other heat metrics for US counties, 2000–2020. Scientific Data 9(1):1–9

    Google Scholar 

  • Spencer JW (1971) Fourier series reprensentation of the position of the sun. Search 2(5):172

    Google Scholar 

  • Steadman RG (1984) A universal scale of apparent temperature. J Appl Meteorol Climatol 23(12):1674–1687

    Google Scholar 

  • Tan J, Kalkstein LS, Huang J, Lin S, Yin H, Shao D (2004) An operational heat/health warning system in Shanghai. Int J Biometeorol 48(3):157–162

    Google Scholar 

  • Tansey EA, Johnson CD (2015) Recent advances in thermoregulation. Adv Physiol Educ 39(3):139–148

    Google Scholar 

  • Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteor Soc 93(4):485–498

    Google Scholar 

  • Tong S, FitzGerald G, Wang XY, Aitken P, Tippett V, Chen D, ... Guo Y (2015) Exploration of the health risk-based definition for heatwave: A multi-city study. Environ Res 142:696–702

  • Wang C, Zhan W, Liu Z, Li J, Li L, Fu P, ... Jiang S (2020) Satellite-based mapping of the Universal Thermal Climate Index over the Yangtze River Delta urban agglomeration. J Clean Prod 277:123830

  • Weihs P, Staiger H, Tinz B, Batchvarova E, Rieder H, Vuilleumier L, ... Jendritzky G (2012) The uncertainty of UTCI due to uncertainties in the determination of radiation fluxes derived from measured and observed meteorological data. Int J Biometeorol 56(3):537–555

  • Woan G (2000) The Cambridge handbook of physics formulas. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511755828

    Article  Google Scholar 

  • Wu F, Yang X, Shen Z (2019) Regional and seasonal variations of outdoor thermal comfort in China from 1966 to 2016. Sci Total Environ 665:1003–1016

    CAS  Google Scholar 

  • Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S (2016) Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environ Int 89:193–203

    Google Scholar 

  • Yan Y, Xu Y, Yue S (2021) A high-spatial-resolution dataset of human thermal stress indices over South and East Asia. Scientific Data 8(1):1–14

    CAS  Google Scholar 

  • Yin C, Yang F, Wang J, Ye Y (2020) Spatiotemporal distribution and risk assessment of heat waves based on apparent temperature in the one belt and one road region. Remote Sensing 12(7):1174. https://doi.org/10.3390/rs12071174

    Article  Google Scholar 

  • Yule EL, Hegerl G, Schurer A, Hawkins E (2023) Using early extremes to place the 2022 UK heat waves into historical context. Atmos Sci Lett 24(7):e1159. https://doi.org/10.1002/asl.1159

    Article  Google Scholar 

  • Zhu X, Huang G, Zhou X, Zheng S (2021) Projection of apparent temperature using statistical downscaling approach in the Pearl River Delta. Theoret Appl Climatol 144(3–4):1253–1266. https://doi.org/10.1007/s00704-021-03603-2

    Article  Google Scholar 

Download references

Acknowledgements

This research is supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP50122-0003). Any opinions, findings and conclusions or recommendations expressed in this material are those of the authors and do not reflect the views of the Ministry of Education, Singapore. The European Center for Medium-Range Weather Forecasting (ECMWF) is acknowledged for providing ERA5 and ERA5-Land reanalysis data. The authors express their sincere gratitude to the reviewers for their constructive comments, which greatly enhanced the quality of this work.

Funding

This research is supported by the Ministry of Education, Singapore, under its Academic Research Fund Tier 2 (MOE-T2EP50122-0003).

Author information

Authors and Affiliations

Authors

Contributions

Mr. Liu LLJ carried out the writing, original draft preparation, conceptualization, methodology, and coding. Dr. Qin XS participated in validation, data curation, review & editing.

Corresponding author

Correspondence to Xiaosheng Qin.

Ethics declarations

Ethics approval

For this type of study formal consent is not required.

Consent to participate

Not Applicable.

Consent for publication

The authors are affirming that all necessary consents have been obtained for this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1.04 MB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, L., Qin, X. Analysis of heatwaves based on the universal thermal climate index and apparent temperature over mainland Southeast Asia. Int J Biometeorol 67, 2055–2068 (2023). https://doi.org/10.1007/s00484-023-02562-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-023-02562-9

Keywords

Navigation