Skip to main content
Log in

Unusual early peaks of airborne ragweed (Ambrosia L.) pollen in the Pannonian Biogeographical Region

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Early peaks of airborne ragweed (Ambrosia L.) pollen concentrations were observed at several monitoring stations in Hungary in June 2017 and 2018, one month before the usual start of the pollen season at the end of July. Backward trajectories were calculated to simulate potential sources of pollen collected at different locations in the Pannonian Biogeographical Region. In a collaboration between aerobiological and phenological networks, a nationwide campaign was conducted to collect field data of ragweed blooming. During field surveys, ragweed plants having extremely early blooming were found most abundantly in a rural site near Vaja (North-East Hungary) and other locations in Hungary. Field observations matched with source areas identified by trajectory analyses; i.e., early-flowering ragweed plants were found at some of these locations. Although similar peaks of airborne pollen concentrations were not detected in other years (e.g., 2016, 2019–2021), alarming results suggest the possibility of expanding seasons of ragweed allergy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afonin AN, Fedorova YA, Li YS (2019) Characterization of the occurrence and abundance of the common ragweed (Ambrosia artemisiifolia L.) with regard to assessment of its expansion potential in European Russia. Russ J Biol Invasions 10(3):220–226. https://doi.org/10.1134/S2075111719030032

    Article  Google Scholar 

  • Apatini D, Magyar D, Novák E, Páldy A (2009) Ragweed (Ambrosia artemisiifolia L.) pollen seasons in Hungary (1992–2008), descriptive results using the database of the Hungarian Aerobiological Network. Növényvédelem 45(8):449–453

    Google Scholar 

  • Béres I (2004) Integrated weed management strategies against ragweed (Ambrosia artemisiifolia L.). Magyar Gyomkutatás És Technológia 5:3–14

    Google Scholar 

  • Béres I, Bíró K (1993) Life cycle and duration of phenophases of ragweed (Ambrosia elatior L.). Növényvédelem 29:148–151

    Google Scholar 

  • Bieker VC, Battlay P, Petersen B, Sun X, Wilson J, Brealey JC, Bretagnolle F, Nurkowski K, Lee C, Owens GL, Lee JY, Kellner FL, van Boheeman L, Gopalakrishnan S, Gaudeul M, Mueller-Schaerer H, Karrer G, Chauvel B, Sun Y, Dalen L, Poczai P, Rieseberg LH, Gilbert MTP, Hodgins KA, Martin MD (2022) Uncovering the hologenomic basis of an extraordinary plant invasion. BioRxiv. https://doi.org/10.1101/2022.02.03.478494

    Article  Google Scholar 

  • Chauvel B, Martinez Q, Guillemin JP (2012) Importance of seeds in the process of common ragweed invasion. Current Trends in Plant Protection Proceedings https://www.cabi.org/isc/FullTextPDF/2013/20133296736.pdf Accessed 14 February 2022

  • Cecchi L, Morabito M, Domeneghetti P, Crisci MA, Onorari M, Orlandini S (2006) Long distance transport of ragweed pollen as a potential cause of allergy in central Italy. Ann Allergy Asthma Immunol 96(1):86–91. https://doi.org/10.1016/s1081-1206(10)61045-9

    Article  Google Scholar 

  • Csépe Z, Leelőssy Á, Mányoki G, Kajtor-Apaini D, Udvardy O, Péter B, Páldy A, Gelybó G, Szigeti T, Pándics T, Kofol-Seliger A, Simčič A, Leru PM, Eftimie A-M, Šikoparija B, Radišić P, Stjepanović B, Hrga I, Večenaj A, Vucić A, PerošPucar D, Škorić T, Ščevková J, Kmenta M, Berger U, Magyar D (2019) The application of a neural network-based ragweed pollen forecast by the Ragweed Pollen Alarm System in the Pannonian Biogeographical Region. Aerobiologia 36:131–140. https://doi.org/10.1007/s10453-019-09615-w

    Article  Google Scholar 

  • Deen W, Swanton CJ, Hunt LA (2001) A mechanistic growth and development model of common ragweed. Weed Sci 49:723–731. https://doi.org/10.1614/0043-1745(2001)049[0723:AMGADM]2.0.CO;2

    Article  CAS  Google Scholar 

  • deWeger LA, Pashley CH, Šikoparija B, Skjøth CA, Kasprzyk I, Grewling Ł, Thibaudon M, Magyar D, Smith M (2016) The long distance transport of airborne Ambrosia pollen to the UK and the Netherlands from Central and south Europe. Int J Biometeorol 60(12):1829–1839. https://doi.org/10.1007/s00484-016-1170-7

    Article  Google Scholar 

  • Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R, Berger U, Clot B, Brandao R (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30(4):385–395. https://doi.org/10.1007/s10453-014-9335-5

    Article  Google Scholar 

  • Grewling Ł, Bogawski P, Smith M (2016) Pollen nightmare: elevated airborne pollen levels at night. Aerobiologia 32(4):725–728. https://doi.org/10.1007/s10453-016-9441-7

    Article  CAS  Google Scholar 

  • Grewling Ł, Bogawski P, Kryza M, Magyar D, Šikoparija B, Skjøth CA, Udvardy O, Werner M, Smith M (2019) Concomitant occurrence of anthropogenic air pollutants, mineral dust and fungal spores during long-distance transport of ragweed pollen. Environ Pollut 254:e112948. https://doi.org/10.1016/j.envpol.2019.07.116

    Article  CAS  Google Scholar 

  • Hirst JM (1952) An automatic volumetric spore trap. Ann Appl Biol 39(2):257–265

    Article  Google Scholar 

  • Jato V, Rodríguez-Rajo FJ, Alcázar P, De Nuntiis P, Galán C, Mandrioli P (2006) May the definition of pollen season influence aerobiological results? Aerobiologia 22(1):13. https://doi.org/10.1007/s10453-005-9011-x

    Article  Google Scholar 

  • Juhász L (1963) Ambrosia species in Hungary. Acta Academiae Paedagogicae Agriensis 1:225–227

    Google Scholar 

  • Karrer (2011) Spreading, population biology and management of the allergic alien ragweed – causes for the actual spreading and control options. Project Report, Page 229. https://dafne.at/projekte/ragweed Accessed 30. 5. 2022.

  • Kazinczi G, Novák R (2014) Integrated methods for suppression of ragweed. National Food Chain Safety Office, Budapest, pp 1–226

  • Kralemann LE, Scalone R, Andersson L, Hennig L (2018) North European invasion by common ragweed is associated with early flowering and dominant changes in FT/TFL1 expression. J Exp Bot 69(10):2647–2658. https://doi.org/10.1093/jxb/ery100

    Article  CAS  Google Scholar 

  • Leelőssy Á, Mészáros R, Kovács A, Lagzi I, Kovács T (2017) Numerical simulations of atmospheric dispersion of iodine-131 by different models. PLoS One 12(2):e0172312. https://doi.org/10.1371/journal.pone.0172312

    Article  CAS  Google Scholar 

  • Lin JC, Gerbig C, Wofsy SC, Andrews AE, Daube BC, Davis KJ, Grainger CA (2003) A near-field tool for simulating the upstream influence of atmospheric observations: the Stochastic Time-Inverted Lagrangian Transport (STILT) model. J Geophys Res: Atmoshttps://doi.org/10.1029/2002JD003161

  • Márk Z, Bikov A, Gálffy G (2016) Characterisctics of ragweed allergy in Hungary. Orv Hetil 157(50):1989–1993. https://doi.org/10.1556/650.2016.30615

    Article  Google Scholar 

  • McGoey BV, Hodgins KA, Stinchcombe JR (2020) Parallel flowering time clines in native and introduced ragweed populations are likely due to adaptation. Ecol Evol 10(11):4595–4608. https://doi.org/10.1002/ece3.6163

    Article  Google Scholar 

  • Meier U (2001) Growth stages of mono- and dicotyledonous plants. BBCH monograph, 2nd edn. German Federal Biological Research Centre for Agriculture and Forestry, Berlin, pp 1–204

    Google Scholar 

  • NOAA (2015) NCEP GDAS/FNL 0.25 Degree Global Tropospheric Analyses and Forecast Grids. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory, Boulder, CO. https://doi.org/10.5065/D65Q4T4Z. Accessed 25 Aug 2021

  • Novák R, Karamán J, Kazinczi G, Somodi I, Csecserits A, Kovács A et al (2014) The spreading of common ragweed. In: Kazinczi G, Novák R (eds) Integrated methods for suppression of common ragweed. National Food Chain Safety Office, Budapest, pp 31–48

    Google Scholar 

  • Prank M, Chapman DS, Bullock JM, Belmonte J, Berger U, Dahl A, Jäger S, Kovtunenko I, Magyar D, Niemelä S, Rantio-Lehtimäki A, Rodinkova V, Sauliene I, Severova E, Šikoparija B, Sofiev M (2013) An operational model for forecasting ragweed pollen release and dispersion in Europe. Agricl for Meteorol 182:43–53

    Article  Google Scholar 

  • Raynor GS, Ogden EC, Hayes JV (1970) Dispersion and deposition of ragweed pollen from experimental sources. J Appl Meteorol 9:885–895. https://doi.org/10.1175/1520-0450(1970)009%3c0885:DADORP%3e2.0.CO;2

    Article  Google Scholar 

  • Saikkonen K, Kari Taulavuori K, Hyvönen T, Gundel PE, Hamilton CE, Vänninen I et al (2012) Climate change-driven species’ range shifts filtered by photoperiodism. Nat Clim Chang 2:239–242. https://doi.org/10.1038/nclimate1430

    Article  Google Scholar 

  • Scalone R, Lemke A, Štefanić E, Kolseth AK, Rašić S, Andersson L (2016) Phenological variation in Ambrosia artemisiifolia L. facilitates near future establishment at northern latitudes. PLoS One 11(11):e0166510. https://doi.org/10.1371/journal.pone.0166510

    Article  CAS  Google Scholar 

  • Schaffner U, Steinbach S, Sun Y, Skjøth CA, de Weger LA, Lommen ST, Augustinus BA, Bonini M, Karrer G, Šikoparija B, Thibaudon M, Müller-Schärer H (2020) Biological weed control to relieve millions from Ambrosia allergies in Europe. Nat Commun 11(1):1–7. https://doi.org/10.1038/s41467-020-15586-1

    Article  CAS  Google Scholar 

  • Šikoparija B, Skjøth C, Kübler KA, Dahl Å, Sommer J, Radišić P, Smith M (2013) A mechanism for long distance transport of Ambrosia pollen from the Pannonian Plain. Agric for Meteorol 180:112–117. https://doi.org/10.1016/j.agrformet.2013.05.014

    Article  Google Scholar 

  • Smith M, Skjøth CA, Myszkowska D, Uruska A, Puc M, Stach A, Balwierz Z, Chlopek K, Piotrowska K, Kasprzyk I, Brandt J (2008) Long-range transport of Ambrosia pollen to Poland. Agric For Meteorol 148(10):1402–1411

    Article  Google Scholar 

  • Surek G, Mányoki G, Csonka B, Kajtor-Apatini D, Udvardy O, Nádor G, Kazinczi G, Vojnich VJ, Magyar D (2017) Studying correspondence of ragweed pollen’s airborne concentration and the new Greening measures under the Common Agriculture Policy. Mechanization Agric Conserv Resour 63(3):115–118

    Google Scholar 

  • Vörös K, Bobvos J, Varró JM, Málnási T, Kói T, Magyar D, Rudnai P, Páldy A (2018) Impacts of long-term ragweed pollen load and other potential risk factors on ragweed pollen allergy among schoolchildren in Hungary. AAEM 25(2):307–313. https://doi.org/10.26444/aaem/82624

    Article  Google Scholar 

  • Zink K, Vogel H, Vogel B, Magyar D, Kottmeier C (2012) Modeling the dispersion of Ambrosia artemisiifolia L. pollen with the model system COSMO-ART. Int J Biometeorol 56(4):669–680. https://doi.org/10.1007/s00484-011-0468-8

    Article  Google Scholar 

  • Ziska L, Knowlton K, Rogers C, Dalan D, Tierney N, Elder MA, Filley W, Shropshire J, Ford LB, Hedberg C, Fleetwood P, Hovanky KT, Kavanaugh T, Fulford G, Vrtis RF, Patz JA, Portnoy J, Coates F, Bielory L, Frenz D (2011) Recent warming by latitude associated with increased length of ragweed pollen season in central North America. PNAS 108(10):4248–4251. https://doi.org/10.1073/pnas.1014107108

    Article  Google Scholar 

Download references

Acknowledgements

The Hungarian part of this work was financially supported by the Széchenyi 2020 program through EFOP-1.8.0-VEKOP-17-2017-00001 project; City Administration for Environmental Protection, City of Novi Sad, for the pollen monitoring in Novi Sad; and Provincial Secretariat for Urban Planning and Environmental Protection AP Vojvodina for the pollen monitoring in Sombor, Vrbas, Kikinda, Zrenjanin, and Sremska Mitrovica. The Slovak part of this study was supported by Grant Agency VEGA (Bratislava), Grant No. 1/0180/22.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Magyar.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1208 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Magyar, D., Novák, R., Udvardy, O. et al. Unusual early peaks of airborne ragweed (Ambrosia L.) pollen in the Pannonian Biogeographical Region. Int J Biometeorol 66, 2195–2203 (2022). https://doi.org/10.1007/s00484-022-02348-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02348-5

Keywords

Navigation