Skip to main content
Log in

Environmental factors contributing to variations in CO2 flux over a barley–rice double-cropping paddy field in the Korean Peninsula

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Understanding the CO2 flux over agricultural crop fields is critical because the temporal cycle is driven by both ecological environment and anthropogenic change. We analyzed the net ecosystem exchange of CO2 measured over a barley–rice double-cropping field using the eddy covariance method for 5 years. We conducted gap-filling based on u*-threshold criteria and partitioned the net ecosystem exchange into gross primary production and respiration. The relative importance analysis of solar radiation, temperature, soil heat flux, soil water content, and vapor deficit revealed that solar radiation and temperature were the dominant contributors to net ecosystem exchange. The annual variation in the net ecosystem exchange followed a bimodal pattern driven by CO2 uptake by both barley and rice, displaying two negative peaks in late April and mid-August. The elongation stages of the crops exhibited the highest flux. Gross primary production and respiration were closely related to solar radiation and nighttime temperature, respectively. The relative importance of the other environmental variables was affected by the cultivation season and irrigation water. In the period of rice cultivation, respiration was approximately 3 µmol m−2 s−1 higher during rice drainage than during the flooded period. The accumulated net ecosystem production was estimated to be 315 gC m−2 and 349 gC m−2 for the barley and rice growing periods, respectively, and 649 gC m−2 for the annual total. These values are comparable with the results of other studies on barley–rice double-cropping fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The raw measurement datasets are fully available from the Korean Meteorological Administration upon calling + 82–64-780–6608.

References

  • Alberto MCR, Wassmann R, Hirano T, Miyata A, Kumar A, Padre A, Amante M (2009) CO2/heat fluxes in rice fields: comparative assessment of flooded and non-flooded fields in the Philippines. Agr Forest Meteorol 149(10):1737–1750. https://doi.org/10.1016/j.agrformet.2009.06.003

    Article  Google Scholar 

  • Arevalo CBM, Bhatti JS, Chang SX, Sidders D (2011) Land use change effects on ecosystem carbon balance: from agricultural to hybrid poplar plantation. Agr Ecosyst Environ 141(3–4):342–349. https://doi.org/10.1016/j.agee.2011.03.013

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Global Change Biol 9(4):479–492. https://doi.org/10.1046/j.1365-2486.2003.00629.x

    Article  Google Scholar 

  • Baldocchi DD (2020) How eddy covariance flux measurements have contributed to our understanding of Global Change Biology. Global Change Biol 26(1):242–260. https://doi.org/10.1111/gcb.14807

    Article  Google Scholar 

  • Baldocchi D, Falge E, Gu LH, Olson R, Hollinger D, Running S, Anthoni P, Bernhofer C, Davis K, Evans R, Fuentes J, Goldstein A, Katul G, Law B, Lee XH, Malhi Y, Meyers T, Munger W, Oechel WUKTP, Pilegaard K, Schmid HP, Valentini R, Verma S, Vesala T, Wilson K, Wofsy S (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. B Am Meteorol Soc 82(11):2415–2434

    Article  Google Scholar 

  • Bhatia A, Aggarwal PK, Jain N, Pathak H (2012) Greenhouse gas emission from rice- and wheat-growing areas in India: spatial analysis and upscaling. Greenh Gases 2(2):115–125. https://doi.org/10.1002/ghg.1272

    Article  CAS  Google Scholar 

  • Diak GR, Mecikalski JR, Anderson MC, Norman JM, Kustas WP, Torn RD, DeWolf RL (2004) Estimating land surface energy budgets from space – review and current efforts at the University of Wisconsin-Madison and USDA-ARS. B Am Meteorol Soc 85(1):65. https://doi.org/10.1175/Bams-85-1-65

    Article  Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis K, AElbers J, HGoldstein A, Grelle A, Granier A,  Guðmundsson J, Hollinger D, Kowalski A, Katul G, Law B, Malhi Y, Meyers T,  Monson R, Munger JW, Oechel W, Paw U KT, Pilegaard K, Rannik U, Rebmann C, Suyker A, Valentini R, Wilson k, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113(1–4):53–74. https://doi.org/10.1016/S0168-1923(02)00102-8

    Article  Google Scholar 

  • Gash JHC, Culf AD (1996) Applying a linear detrend to eddy correlation data in real time. Bound-Lay Meteorol 79(3):301–306

    Article  Google Scholar 

  • Hong J, Kim J, Moon BK, Kim H, Kim B (2001) Exchange of momentum, energy and carbon dioxide in rice paddy. Atmosphere Korean J Meteorol Soc 11(3):573–576 In Korean with English abstract

    Google Scholar 

  • Horst TW, Weil JC (1992) Footprint estimation for scalar flux measurements in the atmospheric surface layer. Bound-Layer Meteorol 59(3):279–296. https://doi.org/10.1007/BF00119817

    Article  Google Scholar 

  • IPCC (2021) Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. https://doi.org/10.1017/9781009157896

  • Kljun N, Calanca P, Rotach MW, Schmid HP (2015) A simple two-dimensional parameterisation for Flux Footprint Prediction (FFP). Geosci Model Dev 8(11):3695–3713. https://doi.org/10.5194/gmd-8-3695-2015

    Article  Google Scholar 

  • Kwon H, Kim J, Hong J, Lim JH (2010) Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea. Biogeosciences 7(5):1493–1504. https://doi.org/10.5194/bg-7-1493-2010

    Article  CAS  Google Scholar 

  • Liu Y, Wan KY, Tao Y, Li ZG, Zhang GS, Li SL, Chen F (2013) Carbon dioxide flux from rice paddy soils in Central China: effects of intermittent flooding and draining cycles. Plos One 8(2):e56562. https://doi.org/10.1371/journal.pone.0056562

    Article  CAS  Google Scholar 

  • Lohila A, Aurela M, Tuovinen JP, Laurila T (2004) Annual CO2 exchange of a peat field growing spring barley or perennial forage grass. J Geophys Res-Atmos 109(D18):D18116. https://doi.org/10.1029/2004jd004715

    Article  Google Scholar 

  • Mauder M, Foken T (2006) Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorol Z 15(6):597–609

    Article  Google Scholar 

  • Meijide A, de la Rua C, Guillaume T, Roll A, Hassler E, Stiegler C, Tjoa A, June T, Corre MD, Veldkamp E, Knohl A (2020) Measured greenhouse gas budgets challenge emission savings from palm-oil biodiesel. Nat Commun 11(1):1089. https://doi.org/10.1038/s41467-020-14852-6

    Article  CAS  Google Scholar 

  • Min SH, Shim KM, Kim YS, Hwang H, Jung MP, Choi IT (2014) Seasonal variation of CO2 exchange during the barley growing season at a rice-barley double cropping paddy field in Gimje. Korea Korean J Agr Forest Meteorol 16(2):137–145. https://doi.org/10.5532/KJAFM.2014.16.2.137In Korean with English Abstract

    Article  Google Scholar 

  • Miyata A, Leuning R, Denmead OT, Kim J, Harazono Y (2000) Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agr Forest Meteorol 102(4):287–303. https://doi.org/10.1016/S0168-1923(00)00092-7

    Article  Google Scholar 

  • Miyata A, Iwata T, Nagai H, Yamada T, Yoshikoshi H, Mano M, Ono K, Han GH, Harazono Y, Ohtaki E, Baten MA, Inohara S, Takimoto T, Saito M (2005) Seasonal variation of carbon dioxide and methane fluxes at single cropping paddy fields in central and western Japan. Phyton-Ann Rei Bot A 45(4):89–97

    CAS  Google Scholar 

  • Moncrieff JB, Massheder JM, deBruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum sensible heat water vapour and carbon dioxide. J Hydrol 188(1–4):589–611

    Article  Google Scholar 

  • Moncrieff JB, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending and filtering of eddy covariance time series. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology: a guide for surface flux measurements. Kluwer Academic, Dordrecht, pp 7–31

    Google Scholar 

  • Moon BK, Hong J, Lee BR, Yun JI, Park EW, Kim J (2003) CO2 and energy exchange in a rice paddy for the growing season of 2002 in Hari. Korea Korean J Agr Forest Meteorol 5(2):51–60 In Korean with English abstract

    Google Scholar 

  • Moyano FE, Kutsch WL, Schulze ED (2007) Response of mycorrhizal, rhizosphere and soil basal respiration to temperature and photosynthesis in a barley field. Soil Biol Biochem 39(4):843–853. https://doi.org/10.1016/j.soilbio.2006.10.001

    Article  CAS  Google Scholar 

  • Newton AC, Flavell AJ, Timothy G, Leat P, Mullholland B, Ramsay L, Revoredo-Giha C, Russell J, Steffenson B, Swanston JS, William T, Waugh R, White P,  Bingham I (2011) Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Secur 3(2):141–178. https://doi.org/10.1007/s12571-011-0126-3

    Article  Google Scholar 

  • Nishimura S, Yonemura S, Minamikawa K, Yagi K (2015) Seasonal and diurnal variations in net carbon dioxide flux throughout the year from soil in paddy field. J Geophys Res-Biogeo 120(1):63–76. https://doi.org/10.1002/2014jg002746

    Article  CAS  Google Scholar 

  • Papale D, Reichstein M, Aubinet M, Canfora E, Bernhofer C, Kutsch W, Longdoz B, Rambal S, Valentini R, Vesala T, Yakir D (2006) Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3(4):571–583. https://doi.org/10.5194/bg-3-571-2006

    Article  CAS  Google Scholar 

  • Park C, Schade GW (2016) Anthropogenic and biogenic features of long-term measured CO2 flux in North Downtown Houston. Texas J Environ Qual 45(1):253–265

    Article  CAS  Google Scholar 

  • Park C, Lee YT, Lee SH (2021) Characteristics of atmospheric CO2 fluxes and the estimation of their potential sources around Boseong Standard Weather Observatory (BSWO). Atmos Environ 252:118340. https://doi.org/10.1016/j.atmosenv.2021.118340

    Article  CAS  Google Scholar 

  • Pielke RA, Pitman A, Niyogi D, Mahmood R, McAlpine C, Hossain F, Goldewijk KK, Nair U, Betts R, Fall S, Reichstein M, Kabat P, de Noblet N (2011) Land use/land cover changes and climate: modeling analysis and observational evidence. Wires Clim Change 2(6):828–850. https://doi.org/10.1002/wcc.144

    Article  Google Scholar 

  • Powell TL, Bracho R, Li JH, Dore S, Hinkle CR, Drake BG (2006) Environmental controls over net ecosystem carbon exchange of scrub oak in central Florida. Agr Forest Meteorol 141(1):19–34. https://doi.org/10.1016/j.agrformet.2006.09.002

    Article  Google Scholar 

  • Poyda A, Reinsch T, Skinner RH, Kluss C, Loges R, Taube F (2017) Comparing chamber and eddy covariance based net ecosystem CO2 exchange of fen soils. J Plant Nutr Soil Sc 180(2):252–266. https://doi.org/10.1002/jpln.201600447

    Article  CAS  Google Scholar 

  • Prescher AK, Grunwald T, Bernhofer C (2010) Land use regulates carbon budgets in eastern Germany: from NEE to NBP. Agr Forest Meteorol 150(7–8):1016–1025. https://doi.org/10.1016/j.agrformet.2010.03.008

    Article  Google Scholar 

  • Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grunwald T, Havrankova K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biol 11(9):1424–1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x

    Article  Google Scholar 

  • Ren XE, Wang QX, Tong CL, Wu JS, Wang KL, Zhu YL, Lin ZJ, Masataka W, Tang GY (2007) Estimation of soil respiration in a paddy ecosystem in the subtropical region of China. Chinese Sci Bull 52(19):2722–2730. https://doi.org/10.1007/s11434-007-0346-2

    Article  CAS  Google Scholar 

  • Ryan MG (1991) Effects of climate change on plant respiration. Ecol Appl 1(2):157–167. https://doi.org/10.2307/1941808

    Article  Google Scholar 

  • Saito M, Miyata A, Nagai H, Yamada T (2005) Seasonal variation of carbon dioxide exchange in rice paddy field in Japan. Agr Forest Meteorol 135(1–4):93–109. https://doi.org/10.1016/j.agrformet.2005.10.007

    Article  Google Scholar 

  • Saito M, Kato T, Tang Y (2009) Temperature controls ecosystem CO2 exchange of an alpine meadow on the northeastern Tibetan Plateau. Global Change Biol 15(1):221–228. https://doi.org/10.1111/j.1365-2486.2008.01713.x

    Article  Google Scholar 

  • Schmitt M, Bahn M, Wohlfahrt G, Tappeiner U, Cernusca A (2010) Land use affects the net ecosystem CO2 exchange and its components in mountain grasslands. Biogeosciences 7(8):2297–2309. https://doi.org/10.5194/bg-7-2297-2010

    Article  CAS  Google Scholar 

  • Schneider J, Kutzbach L, Wilmking M (2012) Carbon dioxide exchange fluxes of a boreal peatland over a complete growing season, Komi Republic. NW Russia Biogeochemistry 111(1–3):485–513. https://doi.org/10.1007/s10533-011-9684-x

    Article  CAS  Google Scholar 

  • Shim KM, Min SH, Kim YS, Jeong MP, Hwang H, Kim SC, So KH (2014) Environmental controls on net ecosystem CO2exchange during a rice growing season at a rice-barley double cropping paddy field in Gimje Korea. J Clim Change Res 5(1):71–81. https://doi.org/10.15531/KSCCR.2014.5.1.71

  • Shim KM, Min SH, Kim YS, Jung MP, Choi IT, Kang KK (2016) Comparison of carbon budget between rice-barley double cropping and rice mono cropping field in Gimje. South Korea Korean J Agr Forest Meteorol 18(4):337–347. https://doi.org/10.5532/KJAFM.2016.18.4.337In Korean with English abstract

    Article  Google Scholar 

  • Smith P, Soussana JF, Angers D, Schipper L, Chenu C, Rasse DP, Batjes NH, van Egmond F, McNeill S, Kuhnert M, Arias-Navarro C, Olesen JE, Chirinda N, Fornara D, Wollenberg E, Alvaro-Fuentes J, Sanz-Cobena A, Klumpp K (2020) How to measure, report and verify soil carbon change to realize the potential of soil carbon sequestration for atmospheric greenhouse gas removal. Global Change Biol 26(1):219–241. https://doi.org/10.1111/gcb.14815

    Article  Google Scholar 

  • Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescatti A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agr Forest Meteorol 171:137–152. https://doi.org/10.1016/j.agrformet.2012.11.004

    Article  Google Scholar 

  • Takimoto T, Iwata T, Yamamoto S, Miura T (2010) Characteristics of CO2 and CH4 flux at barley-rice double cropping field in southern part of Okayama. J Agr Meteorol 66(3):181–191. https://doi.org/10.2480/agrmet.66.3.5In Japanese with English abstract

    Article  Google Scholar 

  • Testi L, Orgaz F, Villalobos F (2008) Carbon exchange and water use efficiency of a growing, irrigated olive orchard. Environ Exp Bot 63(1–3):168–177. https://doi.org/10.1016/j.envexpbot.2007.11.006

    Article  CAS  Google Scholar 

  • Tseng KH, Tsai JL, Alagesan A, Tsuang BJ, Yao MH, Kuo PH (2010) Determination of methane and carbon dioxide fluxes during the rice maturity period in Taiwan by combining profile and eddy covariance measurements. Agr Forest Meteorol 150(6):852–859. https://doi.org/10.1016/j.agrformet.2010.04.007

    Article  Google Scholar 

  • Velasco E, Roth M, Tan SH, Quak M, Nabarro SDA, Norford L (2013) The role of vegetation in the CO2 flux from a tropical urban neighbourhood. Atmos Chem Phys 13(20):10185–10202

    Article  Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Oceanic Tech 14(3):512–526

    Article  Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water-vapor transfer. Q J R Meteorol Soc 106(447):85–100

    Article  Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Bound-Lay Meteorol 99(1):127–150. https://doi.org/10.1023/A:1018966204465

    Article  Google Scholar 

  • Wilson KB, Baldocchi DD (2000) Seasonal and interannual variability of energy fluxes over a broadleaved temperate deciduous forest in North America. Agr Forest Meteorol 100(1):1–18. https://doi.org/10.1016/S0168-1923(99)00088-X

    Article  Google Scholar 

  • Wohlfahrt G, Galvagno M (2017) Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning. Agric For Meteorol 237–238:135–142.  https://doi.org/10.1016/j.agrformet.2017.02.012

  • Wutzler T, Lucas-Moffat A, Migliavacca M, Knauer J, Sickel K, Sigut L, Menzer O, Reichstein M (2018) Basic and extensible post-processing of eddy covariance flux data with REddyProc. Biogeosciences 15(16):5015–5030. https://doi.org/10.5194/bg-15-5015-2018

    Article  CAS  Google Scholar 

  • Chaichana N Bellingrath-Kimura SD Komiya S Fujii Y Noborio K Dietrich O Pakoktom T (2018) Comparison of closed chamber and eddy covariance methods to improve the understanding of methane fluxes from rice paddy fields in Japan. Atmosphere-Basel 9 (9) ARTN 35610.3390/atmos9090356

  • El-Madany TS Carrara A Martin MP Moreno G Kolle O Pacheco-Labrador J Weber U Wutzler T Reichstein M Migliavacca M (2020) Drought and heatwave impacts on semi-arid ecosystems’ carbon fluxes along a precipitation gradient. Philos T R Soc B 375 (1810) ARTN 2019051910.1098/rstb.2019.0519

  • Gromping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softw 17 (1) https://doi.org/10.18637/jss.v017.i01

  • Kanianska R (2016) Agriculture and its impact on land-use, environment, and ecosystem services. https://www.intechopen.com/chapters/51201.https://doi.org/10.5772/63719

Download references

Acknowledgements

The authors thank the National Institute of Meteorological Sciences researchers for providing us with access to observation data of the Boseong Standard Weather Observatory and pictures in Supplementary Fig. 1. The following tools were used for figures: Google Earth and QGIS for Fig. 1; the R-package of “openair” and “ggplot2” for Supplementary Fig. 3 and Fig. 7, respectively; the flux footprint prediction tool of Kljun et al. (2015) for Supplementary Fig. 4.

Funding

This study was supported by the Basic Science Research Program through the National Research (NRF), funded by the Ministry of Education (No. 2020R1I1A1A01055060 and 2020R1A6A1A03044834).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Hwan Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3701 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., El-Madany, T.S. & Lee, SH. Environmental factors contributing to variations in CO2 flux over a barley–rice double-cropping paddy field in the Korean Peninsula. Int J Biometeorol 66, 2069–2082 (2022). https://doi.org/10.1007/s00484-022-02341-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02341-y

Keywords

Navigation