Skip to main content

Advertisement

Log in

Spatiotemporal assessment of aeromycoflora under differing urban green space, sampling height, and meteorological regimes: the atmospheric fungiscape of Thessaloniki, Greece

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

We studied the diversity and abundance of the airborne fungal spores in the city of Thessaloniki, Greece, for two consecutive years. Air samples were collected at one rooftop station (at 30 m) and six near-ground stations (at 1.5 m) that differed in the size and composition of adjacent green spaces. The effects of meteorological factors on airborne fungal spore concentrations were also explored. Cladosporium spores were dominant everywhere in the air of the city. The total concentration of the airborne fungal spores at 30 m was 10 times lower than near the ground. Differences in concentration and composition were far less pronounced among near-ground stations. The attributes of the fungal spore season did not change in a consistent way among stations and years. Concentrations at the near-ground stations matched the grouping of the latter into stations of high, intermediate, and low urban green space. Minimum air temperature was the primary meteorological factor affecting spore abundance, followed by relative humidity. Airborne fungal spores are more homogeneously distributed in the air of the city, but their concentrations decrease more rapidly with height than pollen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code availability

Not applicable.

References

  • Abu-Dieyeh MH, Barham R (2014) Concentrations and dynamics of fungal spore populations in the air of Zarqa, Jordan, using the volumetric method. Grana. https://doi.org/10.1080/00173134.2014.896413

    Article  Google Scholar 

  • Aira MJ, Rodriguez-Rajo FJ, Fernandez-Gonzalez M, Seijo C, Elvira-Rendueles B, Abreu I et al (2013) Spatial and temporal distribution of Alternaria spores in the Iberian Peninsula atmosphere, and meteorological relationships: 1993–2009. Int J Biometeorol 57:265–274

    Article  Google Scholar 

  • Almaguer M, Aira MJ, Rodríguez-Rajo FJ, Fernandez-Gonzalez M, Rojas-Flores TI (2015) Thirty-four identifiable airborne fungal spores in Havana, Cuba. Ann Agric Environ Med. 105604/123219661152068

  • Akgül H, Yılmazkaya D, Akata I, Tosunoğlu A, Bıçakçı A (2016) Determination of airborne fungal spores of Gaziantep (SE Turkey). Aerobiologia 32:441–452

    Article  Google Scholar 

  • Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275

    Article  Google Scholar 

  • Antón SF, de la Cruz DR, Sánchez JS, Reyes ES (2019) Analysis of the airborne fungal spores present in the atmosphere of Salamanca (MW Spain): a preliminary survey. Aerobiologia 35:447–462

    Article  Google Scholar 

  • Aylor DE, Sutton TB (1992) Release of Venturia inaequalis ascospores during unsteady rain: relationship to spore transport and deposition. Phytopathol 82:532–540

    Article  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515:505–511

    Article  CAS  Google Scholar 

  • Bowers RM, Clements N, Emerson JBE, Wiedinmyer C, Hannigan MP, Fierer N (2013) Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environ Sci Technol 47:12097–12106

    Article  CAS  Google Scholar 

  • Brown JKM, Hovmøller MS (2002) Aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science 297:537–541

    Article  CAS  Google Scholar 

  • Burgess H (2002) An update on pollen and fungal spore aerobiology. J Allergy Clin Immunol 110:544–552

    Article  Google Scholar 

  • Bush RK, Prochnau JJ (2004) Alternaria-induced asthma. J Allergy Clin Immunol 113:227–234

    Article  Google Scholar 

  • Campagne CS, Roche PK, Salles JM (2018) Looking into Pandora’s box: ecosystem disservices assessment and correlations with ecosystem services. Ecosyst Serv 30:126–136

    Article  Google Scholar 

  • Charalampopoulos A, Damialis A, Lazarina M, Halley JM, Vokou D (2021) Spatiotemporal assessment of airborne pollen in the urban environment: the pollenscape of Thessaloniki as a case study. Atmos Environ. https://doi.org/10.1016/j.atmosenv.2021.118185

    Article  Google Scholar 

  • Charalampopoulos A, Lazarina M, Tsiripidis I, Vokou D (2018) Quantifying the relationship between airborne pollen and vegetation in the urban environment. Aerobiologia 34:285–300

    Article  Google Scholar 

  • Crameri R, Garbani M, Rhyner C, Huitema C (2014) Fungi: the neglected allergenic sources. Allergy 69:176–185

    Article  CAS  Google Scholar 

  • Ćwik A, Wójcik T, Ziaja M, Wójcik M, Kluska K, Kasprzyk I (2021) Ecosystem services and disservices of vegetation in recreational urban blue-green spaces: some recommendations for greenery shaping. Forests. https://doi.org/10.3390/f12081077

    Article  Google Scholar 

  • Dales RE, Cakmak S, Burnett RT, Judek S, Coates F, Brook JR (2000) Influence of ambient fungal spores on emergency visits for asthma to a Regional Children’s Hospital. Am J Respir Crit Care Med 162:2087–2090

    Article  CAS  Google Scholar 

  • Damialis A, Kaimakamis E, Konoglou M, Akritidis I, Traidl-Hoffmann C, Gioulekas D (2017) Estimating the abundance of airborne pollen and fungal spores at variable elevations using an aircraft: how high can they fly? Sci Rep 7:44535

    Article  CAS  Google Scholar 

  • Damialis A, Mohammad AB, Halley JM, Gange AC (2015a) Fungi in a changing world: growth rates will be elevated, but spore production may decrease in future climates. Int J Biometeorol 59:1157–1167

    Article  Google Scholar 

  • Damialis A, Vokou D, Gioulekas D, Halley JM (2015b) Long-term trends in airborne fungal-spore concentrations: a comparison with pollen. Fungal Ecol 13:150–156

    Article  Google Scholar 

  • Després V, Huffman JA, Burrows S, Hoose C, Safatov A, Buryak G (2012) Primary biological aerosol particles in the atmosphere: a review. Tellus B Chem Phys Meteorol. https://doi.org/10.3402/tellusb.v64i0.15598

    Article  Google Scholar 

  • de Weger LA, Molster F, de Raat K, den Haan J, Romein J, van Leeuwen W et al (2020) A new portable sampler to monitor pollen at street level in the environment of patients. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2020.140404

    Article  Google Scholar 

  • Egan C, De-Wei L, Klironomos J (2014) Detection of arbuscular mycorrhizal fungal spores in the air across different biomes and ecoregions. Fungal Ecol 12:26–31

    Article  Google Scholar 

  • Elbert W, Taylor PE, Andreae MO, Pöschl U (2007) Contribution of fungi to primary biogenic aerosols in the atmosphere: wet and dry discharged spores, carbohydrates, and inorganic ions. Atmos Chem Phys 7:4569–4588

    Article  CAS  Google Scholar 

  • Fang Z, Ouyang Z, Hu L, Wang X, Zheng U, Lin X (2005) Culturable airborne fungi in outdoor environments in Beijing, China. Sci Total Environ 350:47–58

    Article  CAS  Google Scholar 

  • Fernández-Rodríguez S, Tormo-Molina R, Maya-Manzano JM, Silva-Palacios I, Gonzalo-Garijo A (2014) Outdoor airborne fungi captured by viable and non-viable methods. Fungal Ecol 7:16–26

    Article  Google Scholar 

  • Fitt BDL, McCartney HA, Walklate PJ (1989) The role of rain in dispersal of pathogen inoculum. Annu Rev Phytopathol 27:241–270

    Article  Google Scholar 

  • Gabey AM, Gallagher MW, Whitehead J, Dorsey JR, Kaye PH, Stanley WR (2010) Measurements and comparison of primary biological aerosol above and below a tropical forest canopy using a dual channel fluorescence spectrometer. Atmos Chem Phys 10:4453–4466

    Article  CAS  Google Scholar 

  • Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A et al (2017) Recommended terminology for aerobiological studies. Aerobiologia 33:293–295

    Article  Google Scholar 

  • Galán C, Smith M, Damialis A, Frenguelli G, Gehrig R, Grinn-Gofroń A et al (2021) Airborne fungal spore monitoring: between analyst proficiency testing. Aerobiologia 37:351–361

    Article  Google Scholar 

  • Galán C, Smith M, Thibaudon M, Frenguelli G, Oteros J, Gehrig R et al (2014) Pollen monitoring: minimum requirements and reproducibility of analysis. Aerobiologia 30:385–395

    Article  Google Scholar 

  • Ganthaler A, Mayr S (2015) Temporal variation in airborne spore concentration of Chrysomyxa rhododendri: correlation with weather conditions and consequences for Norway spruce infection. For Pathol 45:443–449

    Article  Google Scholar 

  • Gioulekas D, Damialis A, Papakosta D, Spieksma F, Giouleka P, Patakas D (2004) Allergenic fungi spore records (15 years) and sensitization in patients with respiratory allergy in Thessaloniki-Greece. J Investig Allergol Clin Immunol 14:225–231

    CAS  Google Scholar 

  • Grant-Smith E (1986) Sampling and identifying allergenic pollens and molds II. Blewstone Press, San Antonio, TX, An illustrated identification manual for air samplers

    Google Scholar 

  • Grant T, Rule AM, Koehler K, Wood RA, Elizabeth C, Matsui EC (2019) Sampling devices for indoor allergen exposure: pros and cons. Curr Allergy Asthma Rep. https://doi.org/10.1007/s11882-019-0833-y

    Article  Google Scholar 

  • Grinn-Gofroń A, Bogawski P, Bosiacka B, Nowosad J, Camacho I, Sadyś M et al (2021) Abundance of Ganoderma sp in Europe and SW Asia: modelling the pathogen infection levels in local trees using the proxy of airborne fungal spore concentrations. Sci Total Environ 793:148509

    Article  CAS  Google Scholar 

  • Grinn-Gofroń A, Nowosad J, Bosiacka B, Camacho I, Pashley C, Belmonte J et al (2019) Airborne Alternaria and Cladosporium fungal spores in Europe: forecasting possibilities and relationships with meteorological parameters. Sci Total Environ 653:938–946

    Article  CAS  Google Scholar 

  • Grinn- Gofroń A, Strzelczak A (2012) Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int J Biometeorol 57:759–768

    Article  Google Scholar 

  • Hoerl AE (1962) Application of ridge analysis to regression problems. Chem Eng Prog 58:54–59

    Google Scholar 

  • Kasprzyk I, Grinn-Gofroń A, Ćwik A, Kluska K, Cariñanos P, Wójcik T (2021) Allergenic fungal spores in the air of urban parks. Aerobiologia 37:39–51

    Article  Google Scholar 

  • Kasprzyk I, Worek M (2006) Airborne fungal spores in urban and rural environments in Poland. Aerobiologia 22:169–176

    Article  Google Scholar 

  • Katz DSW, Batterman SA (2020) Urban-scale variation in pollen concentrations: a single station is insufficient to characterize daily exposure. Aerobiologia. https://doi.org/10.1007/s10453-020-09641-z

    Article  Google Scholar 

  • Khattab A, Levetin E (2008) Effect of sampling height on the concentration of airborne fungal spores. Ann Allergy Asthma Immunol 101:529–534

    Article  Google Scholar 

  • Koehler KA, Peters TM (2015) New methods for personal exposure monitoring for airborne particles. Curr Envir Health Rpt 2:399–411

    Article  CAS  Google Scholar 

  • Lam HCY, Jarvis D, Fuertes E (2021) Interactive effects of allergens and air pollution on respiratory health: a systematic review. Sci Total Environ 757:143924

    Article  CAS  Google Scholar 

  • Leyronas C, Nicot PC (2013) Monitoring viable airborne inoculum of Botrytis cinerea in the South-East of France over 3 years: relation with climatic parameters and the origin of air masses. Aerobiologia 29:291–299

    Article  Google Scholar 

  • Lilleskov EA, Bruns TD (2005) Spore dispersal of a resupinate ectomycorrhizal fungus, Tomentella sublilacina, via soil food webs. Mycologia 97:762–769

    Article  Google Scholar 

  • Lyytimäki J, Sipilä M (2009) Hopping on one leg: the challenge of ecosystem disservices for urban green management. Urban for Urban Green 8:309–315

    Article  Google Scholar 

  • Mallo AC, Nitiu DS, Gardella Sambeth MC (2011) Airborne fungal spore content in the atmosphere of the city of La Plata, Argentina. Aerobiologia 27:77–84

    Article  Google Scholar 

  • Nageen Y, Asemoloye MD, Põlme S, Wang X, Xu S, Ramteke PW et al (2021) Analysis of culturable airborne fungi in outdoor environments in Tianjin China. BMC Microbiol. https://doi.org/10.1186/s12866-021-02205-2

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration - National Centers for Environmental Information [NOOA] (2013) VIIRS Climate Raw Data Record (C-RDR) from Suomi NPP, Version 1 [DS3505 - Surface Data Hourly Global]. NOAA National Centers for Environmental Information 8:6288

    Google Scholar 

  • Nilsson S (ed) (1983) Atlas of airborne fungal spores in Europe. Springer, Heidelberg

    Google Scholar 

  • O’Connor DJ, Sadyś M, Skjøth CA, Healy DA, Kennedy R, Sodeau JR (2014) Atmospheric concentrations of Alternaria, Cladosporium, Ganoderma and Didymella spores monitored in Cork (Ireland) and Worcester (England) during the summer of 2010. Aerobiologia 30:397–411

    Article  Google Scholar 

  • O’Gorman CM, Fuller HT (2008) Prevalence of culturable airborne spores of selected allergenic and pathogenic fungi in outdoor air. Atmos Environ 42:4355–4368

    Article  CAS  Google Scholar 

  • Oliveira M, Ribeiro H, Delgado JL, Abreu I (2009) Seasonal and intradiurnal variation of allergenic fungal spores in urban and rural areas of the North of Portugal. Aerobiologia 25:85–98

    Article  Google Scholar 

  • Oliveira M, Ribeiro H, Delgado L, Fonseca J, Castel-Branco MG, Abreu I (2010) Outdoor allergenic fungal spores: comparison between an urban and a rural area in northern Portugal. J Investig Allergol Clin Immunol 20:117–128

    CAS  Google Scholar 

  • Olsen Y, Gosewinkel UB, Skjøth CA, Hertel O, Rasmussen K, Sigsgaard T (2019) Regional variation in airborne Alternaria spore concentrations in Denmark through 2012–2015 seasons: the influence of meteorology and grain harvesting. Aerobiologia 35:533–551

    Article  Google Scholar 

  • Patel TY, Buttner M, Rivas D, Cross C, Bazylinski DA, Seggev J (2018) Variation in airborne fungal spore concentrations among five monitoring locations in a desert urban environment. Environ Monit Assess. https://doi.org/10.1007/s10661-018-7008-5

    Article  Google Scholar 

  • Pyrri I, Kapsanaki-Gotsi E (2015) Evaluation of the fungal aerosol in Athens, Greece, based on spore analysis. Aerobiologia 31:179–190

    Article  Google Scholar 

  • Pyrri I, Kapsanaki-Gotsi E (2017) Functional relations of airborne fungi to meteorological and pollution factors in a Mediterranean urban environment. Fungal Ecol 30:48–54

    Article  Google Scholar 

  • Reinmuth-Selzle K, Kampf CJ, Lucas K, Lang-Yona N, Fröhlich-Nowoisky J, Shiraiwa M et al (2017) Air pollution and climate change effects on allergies in the anthropocene: abundance, interaction, and modification of allergens and adjuvants. Environ Sci Technol 51:4119–4141

    Article  CAS  Google Scholar 

  • Ruppert KM, Kline RJ, Rahman MS (2019) Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob Ecol Conserv. https://doi.org/10.1016/j.gecco.2019.e00547

    Article  Google Scholar 

  • R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Ščevková J, Hrabovský M, Kováč J, Rosa S (2019) Intradiurnal variation of predominant airborne fungal spore biopollutants in the Central European urban environment. Environ Sci Pollut Res 26:34603–34612

    Article  CAS  Google Scholar 

  • Shackleton CM, Ruwanza S, Sinasson Sanni GK, Bennett S, De Lacy P, Modipa R et al (2016) Unpacking Pandora’s box: understanding and categorising ecosystem disservices for environmental management and human wellbeing.

  • Shapiro J, Báldi A (2014) Accurate accounting: how to balance ecosystem services and disservices. Ecosys Serv 7:201–202

    Article  Google Scholar 

  • Skjøth CA, Damialis A, Belmonte J, De Linares C, Fernández-Rodríguez S, Grinn-Gofroń A et al (2016) Alternaria spores in the air across Europe: abundance, seasonality and relationships with climate, meteorology and local environment. Aerobiologia 32:3–22

    Article  Google Scholar 

  • Stępalska D, Wołek J (2009) Intradiurnal periodicity of fungal spore concentrations (Alternaria, Botrytis, Cladosporium, Didymella, Ganoderma) in Cracow. Poland Aerobiologia 25:333

    Article  Google Scholar 

  • Vélez-Pereira AM, De Linares C, Delgado R, Belmonte J (2016) Temporal trends of the airborne fungal spores in Catalonia (NE Spain), 1995–2013. Aerobiologia 32:23–37

    Article  Google Scholar 

  • Werchan B, Werchan M, Mücke H-G, Gauger U, Simoleit A, Zuberbier T et al (2017) Spatial distribution of allergenic pollen through a large metropolitan area. Environ Monit Assess 189:169

    Article  Google Scholar 

Download references

Funding

This research is co-financed by Greece and the European Union (European Social Fund—ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Reinforcement of Postdoctoral Researchers—2nd Cycle” (MIS-5033021), implemented by the State Scholarships Foundation (ΙΚΥ). Acquisition by Charalampopoulos A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Charalampopoulos.

Ethics declarations

Ethics approval

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 186 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charalampopoulos, A., Damialis, A. & Vokou, D. Spatiotemporal assessment of aeromycoflora under differing urban green space, sampling height, and meteorological regimes: the atmospheric fungiscape of Thessaloniki, Greece. Int J Biometeorol 66, 895–909 (2022). https://doi.org/10.1007/s00484-022-02247-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-022-02247-9

Keywords

Navigation