Skip to main content

Bioclimatic pattern in a Mediterranean mountain area: assessment from a classification approach on a regional scale

A Correction to this article was published on 01 March 2021

This article has been updated

Abstract

The present work analyses the main weather patterns over the period 1981–2010 in the Central Apennines (Italy), drawing upon data from 23 monitoring stations spanning a wide elevation range (260–1750 m asl). Cluster analysis was used to identify homogeneous units and to verify the effectiveness of the bioclimatic classification by crossing the results derived from the application of hierarchical and non-hierarchical classification techniques. The results reveal a diversified picture of five clusters that depends on several factors as elevation, the geographic position within or outside the mountainous range, and the regional morphological traits. Although Mediterranean and Temperate climatic features coexist, the Mediterranean pattern in the southern areas and internal valleys better expresses the overall mixed characteristics of Central Italy. The use of a mixed methodology of hierarchic and partitioning methods of cluster analysis improves the bioclimatic classification, especially to quantify the level of humidity and the mediterraneity degree.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Change history

References

  1. Aguilera F, Orlandi F, Oteros J, Bonofiglio T, Fornaciari M (2015) Bioclimatic characterisation of the Mediterranean region: future climate projections for Spain, Italy and Tunisia. It J Agromet 1:45–58

    Google Scholar 

  2. Alessandri A, Borrelli A, Navarra A, Arribas A, Déqué M, Rogel P, Weisheimer A (2011) Evaluation of probabilistic quality and value of the ENSEMBLES multimodel seasonal forecasts: comparison with DEMETER. Mon Weather Rev 139:581–607. https://doi.org/10.1175/2010MWR3417.1

    Article  Google Scholar 

  3. Attorre F, Alfò M, De Sanctis M, Francesconi F, Bruno F (2007) Comparison of interpolation methods for mapping climatic and bioclimatic variables at regional scale. Int J Climatol 27:1825–1843. https://doi.org/10.1002/joc.1495

    Article  Google Scholar 

  4. Bagnouls F, Gaussen H (1957) Les climats biologiques et leur classification. Ann Geogr 66:193–220

    Article  Google Scholar 

  5. Bazan G, Marino P, Guarino R, Domina G, Schicchi R (2015) Bioclimatology and vegetation series in Sicily: a geostatistical approach. Ann Bot Fenn 52:1–18. https://doi.org/10.5735/085.052.0202

    Article  Google Scholar 

  6. Biondi E, Baldoni M (1994) The climate and vegetation of peninsular Italy. Coll Phyt 23:675–721

    Google Scholar 

  7. Blasi C (1994) Il fitoclima del Lazio. Fitosociologia 27:151–195

    Google Scholar 

  8. Blasi C (1996) Il fitoclima d’Italia. G Bot Ital 130:166–176. https://doi.org/10.1080/11263509609439523

    Article  Google Scholar 

  9. Blasi C, Carranza ML, Filesi L, Tilia A, Acosta ATR (1999) Relation between climate and vegetation along a Mediterranean - temperate boundary in central Italy. Gl Ecol Biogeogr 8:17–27. https://doi.org/10.1046/j.1365-2699.1999.00121.x

    Article  Google Scholar 

  10. Blasi C, Di Pietro R, Fortini P, Catonica C (2003) The main plant community types of the alpine belt of the Apennine chain. Pl Biosyst 137:83–110. https://doi.org/10.1080/11263500312331351361

    Article  Google Scholar 

  11. Blasi C, Chirici G, Corona P, Marchetti M, Maselli F, Puletti N (2007) Spazializzazione di dati climatici a livello nazionale tramite modelli regressivi localizzati. Forest@ 4:213–219. https://doi.org/10.3832/efor0453-0040213

    Article  Google Scholar 

  12. Breckle S-W (2002) Walter’s vegetation of the Earth. The Ecological Systems of the Geo-Biosphere, 4th edn. Springer, Berlin Heidelberg

    Google Scholar 

  13. Bricca A, Conti L, Tardella FM, Catorci A, Iocchi M, Theurillat JP, Cutini M (2019) Community assembly processes along a sub-Mediterranean elevation gradient: analysing the interdependence of trait community weighted mean and functional diversity. Pl Ecol 220:1139–1151. https://doi.org/10.1007/s11258-019-00985-2

  14. Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sc 10:447–458. https://doi.org/10.5194/nhess-10-447-2010

    Article  Google Scholar 

  15. Bucchignani E, Montesarchio M, Zollo AL, Mercogliano P (2015) High-resolution climate simulations with COSMO-CLM over Italy: performance evaluation and climate projections for the 21st century. Int J Climatol 36:735–756. https://doi.org/10.1002/joc.4379

    Article  Google Scholar 

  16. Calinski T, Harabasz J (1974) A dendrite method for cluster analysis. Comm Stat Theory Methods 3(1):1–27

    Article  Google Scholar 

  17. Caloiero T, Callegari G, Cantasano N, Coletta V, Pellicone G (2016) Bioclimatic analysis in a region of southern Italy (Calabria). Pl Biosyst 150:1282–1295. https://doi.org/10.1080/11263504.2015.1037814

    Article  Google Scholar 

  18. Canu S, Rosati L, Fiori M, Motroni A, Filigheddu R, Farris E (2015) Bioclimate map of Sardinia (Italy). J Maps 11:711–718. https://doi.org/10.1080/17445647.2014.988187

    Article  Google Scholar 

  19. Chelli S, Wellstein C, Campetella G, Canullo R, Tonin R, Zerbe S, Gerdol R (2017) Climate change response of vegetation across climatic zones in Italy. Clim Res 71:249–262. https://doi.org/10.3354/cr01443

    Article  Google Scholar 

  20. Chelli S, Marignani M, Barni E, Petraglia A, Puglielli G et al (2019) Plant-environment interactions through functional traits perspective: a review of Italian studies. Pl Biosyst 153(6):853–869. https://doi.org/10.1080/11263504.2018.1559250

    Article  Google Scholar 

  21. Ciaschetti G, Pirone G, Giancola C, Frattaroli AR, Stanisci A (2016) Prodrome of the Italian vegetation: a new alliance for the high-mountain chamaephyte communities of central and southern Apennines. Pl Biosyst 150(4):829–833. https://doi.org/10.1080/11263504.2015.1076084

    Article  Google Scholar 

  22. Cosentino D, Cipollari P, Marsili P, Scrocco D (2010) Geology of the central Apennine: a regional review. In: Beltrando M et al (eds) J Virt Expl, vol 36, paper 11. https://doi.org/10.3809/jvirtex.2009.00223

    Chapter  Google Scholar 

  23. Costa AC, Soares A (2009) Homogenization of climate data: review and new perspective using geostatistics. Math Geosci 41:291–305. https://doi.org/10.1007/s11004-008-9203-3

    Article  Google Scholar 

  24. Daget P (1977) Le bioclimat méditerranéen: analyse des formes climatiques par le système d’Emberger. Vegetatio 34(2):87–103. https://doi.org/10.1007/BF00054477

    Article  Google Scholar 

  25. Daget P (1980) Un élément actuel de la caractérisation du monde méditerranéen: le climat. Nat Monspel Ser Bot Hors Série:101–126

  26. Davies DL, Bouldin DW (1979) A cluster separation measure. IEEE transactions on pattern analysis and machine intelligence. PAMI 1:224–227

    CAS  Article  Google Scholar 

  27. De Martonne E (1926) Une nouvelle fonction climatologique: L’indice d’aridité. La Meteorologie:44–458

  28. Desai AR, Wohlfart G, Zeeman MJ, Katata G, Eugster W, Montagnani L, Gianelle D, Mauder M, Schmid HP (2016) Montane ecosystem productivity responds more to global circulation patterns than climatic trends. Environ Res Lett 11:024013. https://doi.org/10.5445/IR/1000064333

    Article  Google Scholar 

  29. Di Lena B, Antenucci F, Vergni L, Mariani L (2014) Analysis of the climatic aggressiveness of rainfall in the Abruzzo Region. It J Agromet 1:33–44

    Google Scholar 

  30. Emberger L (1933) La végétation de la région méditerranéenne. Essai d’une classification des groupements végétaux. Rev Gén Bot 42(643-662):705–721

    Google Scholar 

  31. Emberger L (1955) Une classification biogéographique des climats. Nat Monspel Série Botan 7:3–43

    Google Scholar 

  32. Emberger L (1971) Considerations complementaires au sujet des recherches bioclimatiques et phytogeographiques-ecologiques. Travaux de Botanique et d’Ecologie, France, pp 291–301

    Google Scholar 

  33. Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  34. Garnier E, Vile D, Roumet C, Lavorel S, Grigulis K, Navas MR, Lloret F (2019) Inter- and intra-specific trait shift among sites differing in drought conditions at the north western edge of the Mediterranea region. Flora 253:147–160. https://doi.org/10.1016/j.flora.2018.07.009

    Article  Google Scholar 

  35. Giacobbe A (1962) I caratteri mediterranei della flora montana appenninica. Italia forestale e montana 17:13–19

    Google Scholar 

  36. Giacobbe A (1964) La mesure du bioclimat méditerranéen. Nat Monspel Série Botan 16:45–69

    Google Scholar 

  37. Giorgi F (2006) Climate change hot-spots. Geophys Res Lett 33:L08707. https://doi.org/10.1029/2006GL025734

    Article  Google Scholar 

  38. Guijarro JA (2017) Homogenization of climatological series with Climatol 3.0. 9th Seminar for homogenization and quality control in climatological databases and 4th conference on spatial interpolation techniques in climatology and meteorology, 3-7 April 2017, Budapest, pp. 3–7.

  39. Haylock MR, Hofstra N, Klein Tank AMG, Klok EJ, Jones PD, New M (2008) A European daily-resolution gridded data set of surface temperature and precipitation for 1950-2006. J Geophys Res 113:1–12. https://doi.org/10.1029/2008JD010201

    Article  Google Scholar 

  40. Hartigan JA, Wong MA (1979) A k-means clustering algorithm. J R Stat Soc Ser C 28(1):100–108. https://doi.org/10.2307/2346830

    Article  Google Scholar 

  41. Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  42. Isotta FA, Frei C, Weilguni V, Perčec Tadić M, Lassègues P, Rudolf B, Pavan V, Cacciamani C, Antolini G, Ratto SM, Munari M, Micheletti S, Bonati V, Lussana C, Ronchi C, Panettieri E, Marigo G, Vertačnik G (2014) The climate of daily precipitation in the Alps: development and analysis of a high-resolution grid dataset from pan-Alpine rain-gauge data. Int J Climatol 34:1657–1675. https://doi.org/10.1002/joc.3794

    Article  Google Scholar 

  43. Karger DN, Conrad O, Böhner J, Kawohl T, Kreft H, Soria-Auza RW, Zimmermann NE, Linder HP, Kessler M (2017) Climatologies at high resolution for the earth’s land surface areas. Nature Scientific Data 4:1–20. https://doi.org/10.1038/sdata.2017.122

    Article  Google Scholar 

  44. Kaufman L, Rousseeuw PJ (1990) Finding Groups in Data. John Wiley & Sons, New York

    Book  Google Scholar 

  45. Klein Tank AMG, Wijngaard JB, Können GP, Böhm R, Demarée G, Gocheva A, Mileta M, Pashiardis S, Hejkrlik L, Kern-Hansen C, Heino R, Bessemoulin P, Müller-Westermeier G, Tzanakou M, Szalai S, Pálsdóttir T, Fitzgerald D, Rubin S, Capaldo M, Maugeri M, Leitass A, Bukantis A, Aberfeld R, van Engelen AFV, Forland E, Mietus M, Coelho F, Mares C, Razuvaev V, Nieplova E, Cegnar T, Antonio López J, Dahlström B, Moberg A, Kirchhofer W, Ceylan A, Pachaliuk O, Alexander LV, Petrovic P (2002) Daily dataset of 20th-century surface air temperature and precipitation series for the European climate assessment. Int J Climatol 22:1441–1453. https://doi.org/10.10002/joc.773

    Article  Google Scholar 

  46. Köppen W (1900) Versuch einer Klassifikation der Klimate, vorzugsweise nach ihren Beziehungen zur Pflanzenwelt. Geogr Z 6:593–679

    Google Scholar 

  47. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130

    Article  Google Scholar 

  48. Legendre P, Legendre L (2012) Numerical Ecology. Elsevier Netherlands, Amsterdam, pp 383–402

    Google Scholar 

  49. Le Houérou HN (2004) An agro-bioclimatic classification of arid and semiarid lands in the isoclimatic Mediterranean zones. Arid Land Res Manag 18:301–346. https://doi.org/10.1080/15324980490497302

    Article  Google Scholar 

  50. Le Houérou HN (2009) Bioclimatic Classification. In: Bioclimatology and biogeography of Africa. Springer-Verlag, Berlin Heidelber, pp 79–124

    Chapter  Google Scholar 

  51. Lionello P, Malanotte-Rizzoli P, Boscolo R, Alpert P, Artale V, Li L, Luterbacher J, May W, Trigo R, Tsimplis M, Ulbrich U, Xoplaki E (2006) The Mediterranean climate: an overview of the main characteristics and issues. Dev Earth Env Sc 4:1–26. https://doi.org/10.1016/S1571-9197(06)80003-0

    Article  Google Scholar 

  52. Lüdi W (1935) Beitrag zur regionalen Vegetationsgliederung der Appenninenhalbinsel. Veröffentlichungen Geobotanischen Inst Rübel Zürich 12:212–239

    Google Scholar 

  53. MacQueen J (1967) Some methods of classification and analysis of multivariate observation. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, pp 281–297

    Google Scholar 

  54. Metzger MJ, Bunce RGH, Jongman RHG, Sayre R, Trabucco A, Zomer R (2013) A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Gl Ecol Biog 22:630–638. https://doi.org/10.1111/geb.12022

    Article  Google Scholar 

  55. Milligan GW, Cooper MC (1988) A study of standardization of variables in cluster analysis. J Classif 5:181–204

    Article  Google Scholar 

  56. Mitrakos K (1980) A theory for Mediterranean plant life. Acta Oecol 1:245–252

    Google Scholar 

  57. Mitrakos K (1982) Winter low temperature in Mediterranean type ecosystems. Ecol Medit 8:95–102

    Google Scholar 

  58. Mooi E, Sarstedt M (2011) Cluster Analysis. In: Sarstedt M, Mooi E (eds) A concise guide to market research, 1rd edn. Springer Nature, Germany, pp 237–284. https://doi.org/10.1007/978-3-662-56707-4

    Chapter  Google Scholar 

  59. Nunes A, Kobel M, Pinho P, Matos P, de Bello F, Correia D, Branquinho C (2017) Which plant traits respond to aridity ? A critical step to assess functional diversity in Mediteranean dryland. Agr For Met 239:176–184. https://doi.org/10.1016/j.agrformet.2017.03.007

    Article  Google Scholar 

  60. Oliver JE (2005) Encyclopedia of World Climatology. Springer Netherlands, Dordrecht, pp 85–94

    Book  Google Scholar 

  61. Peel MC, Finlayson BL, McMahon TA (2007) Updated world map of the Köppen-Geiger climate classification. Hydr Earth Syst Sc 11:1633–1644. https://doi.org/10.5194/hess-11-1633-2007

    Article  Google Scholar 

  62. Pesaresi S, Biondi E, Casavecchia S (2017) Bioclimates of Italy. J Maps 13:955–960. https://doi.org/10.1080/17445647.2017.1413017

    Article  Google Scholar 

  63. Pesaresi S, Galdenzi D, Biondi E, Casavecchia S (2014) Bioclimate of Italy: application of the worldwide bioclimatic classification system. J Maps 10:538–553. https://doi.org/10.1080/17445647.2014.891472

    Article  Google Scholar 

  64. Peterson T (2011) Ecological niche conservatism: a time-structured review of evidence. J Biogeogr 38:817–827. https://doi.org/10.1111/j.1365-2699.2010.02456.x

    Article  Google Scholar 

  65. Pettitt AN (1979) A non-parametric approach to the change-point problem. Appl Stat 28:126–135

    Article  Google Scholar 

  66. Piovesan G, Biondi F, Bernabei M, Di Filippo A, Schirone B (2005) Spatial and altitudinal bioclimatic zones of the Italian peninsula identified from a beech (Fagus sylvatica L.) tree-ring network. Acta Oecol 27:197–210. https://doi.org/10.1016/j.actao.2005.01.001

    Article  Google Scholar 

  67. Pogliani M and De Gregorio F (1979) Notizie ed osservazioni sui fenomeni climatici dell’Abruzzo. Quad. Museo di Speleologia “V.Rivera” 1 : 3-42.

  68. Rivas-Martínez S (1996) Geobotanica y climatologia. In: Rivas-Martínez S (ed) Discursos pronunciados en el Acto de Investidura de Doctor "Honoris Causa" del Excelentísimo Señor D. Universidad de Granada, Granada, pp 23–98

    Google Scholar 

  69. Rivas-Martínez S (2008) Global bioclimatics (Clasificación Bioclimática de la Tierra). Phytosociological Research Centere. http://www.globalbioclimatics.org/book/bioc/global_bioclimatics-2008_00.htm. .

  70. Rivas-Martínez S, Loidi J (1999) Bioclimatology of the Iberian peninsula. Itinera Geobotanica 13:41-47

  71. Rivas-Martínez S, Coautores (2007) Mapa de series, geoseries y geopermaseries de vegetación de España [Memoria del mapa de vegetación potencial de España. Parte 1]. Itinera Geobotanic 17:5–436

    Google Scholar 

  72. Rivas-Martínez S, Penas A, Diaz TE (2004a)a Bioclimatic map of Europe – bioclimates. Cartographic Service, University of Leon. http://www.globalbioclimatics.org/form/bi_med.htm. .

  73. Rivas-Martínez S, Penas A, Diaz TE (2004b)b Bioclimatic map of Europe – thermotypes. Cartographic Service, University of Leon. http://www.globalbioclimatics.org/form/tb_med.htm.

  74. Rivas-Martínez S, Saenz SR, Penas A (2011) Worldwide bioclimatic classification system. Global Geobot 1:1–634. https://doi.org/10.5616/gg110001

    Article  Google Scholar 

  75. Rivas-Martínez S, Pensas Á, del Río S, Díaz González T E, Rivas-Sáenz S (2017) In: Loidi J (ed) The vegetation of the Iberian peninsula, Vol1, 1 edn. Springer, Utrech, The Netherlands, pp 29-80

  76. Rogora M, Frate L, Carranza ML, Freppaz M, Stanisci A, Bertani I, Bottarin R, Brambilla A, Canullo R, Carbognani M, Cerrato C, Chelli S, Cremonese E, Cutini M, Di Musciano M, Erschbamer B, Godone D, Iocchi M, Isabellon M, Magnani A, Mazzola L, Morra di Cella U, Pauli H, Petey M, Petriccione B, Porro F, Psenner R, Rossetti G, Scotti A, Sommaruga R, Tappeiner U, Theurillat JP, Tomaselli M, Viglietti D, Viterbi R, Vittoz P, Winkler M, Matteucci G (2018) Assessment of climate change effects on mountain ecosystems through a cross-site analysis in the Alps and Apennines. Sc Total Env 624:1429–1442. https://doi.org/10.1016/j.scitotenv.2017.12.155

    CAS  Article  Google Scholar 

  77. Sander J, Wardell-Johnson G (2012) Defining and characterizing high-rainfall Mediterranean climates. Plant Biosyst 146(2):451–460. https://doi.org/10.1080/11263504.2012.656726

    Article  Google Scholar 

  78. Schmidt-Thomé P, Greiving S (2013) European Climate Vulnerabilities and Adaptation: A spatial Planning Perspective. John Wiley & Sons, Chichester. https://doi.org/10.1002/9781118474822

    Book  Google Scholar 

  79. Smadi MM, Zghoul A (2006) A sudden change in rainfall characteristics in Amman, Jordan during The mid 1950s. Am J Env Sc 2:84–91. https://doi.org/10.3844/ajessp.2006.84.91

    Article  Google Scholar 

  80. Stanisci A, Bricca A, Calabrese V, Cutini M, Pauli H, Steinbauer K, Carranza ML (2020) Functional composition and diversity of leaf traits in subalpine versus alpine vegetation of the Apennine. AOB Plants 12. https://doi.org/10.1093/aobpla/plaa004

  81. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  82. Torregrosa A, Taylor MD, Flint LE, Flint AL (2013) Present, future, and novel bioclimates of the San Francisco, California Region. PLoS One 8:1–14. https://doi.org/10.1371/journal.pone.0058450

    CAS  Article  Google Scholar 

  83. Walter H, Box E (1976) Global classification of natural terrestrial ecosystems. Vegetatio 32:75–81

    Article  Google Scholar 

  84. Walter H, Lieth H (1960) Klimadiagramm-Weltatlas. G. Fischer Verlag, Jena

    Google Scholar 

  85. Ward JH (1963) Hierachical grouping to optimize an objective function. J Am Stat Assoc 58:236–244

    Article  Google Scholar 

  86. World Meteorological Organization (2017) Technical regulations basic documents No. 2 Vol. 1 - general meteorological standards and recommended practices, Chairperson, Genève.

Download references

Acknowledgements

We would like to express our special thanks to Dr. Marco Campilii (Servizio Idrografico e Mareografico della Regione Abruzzo) and Dr. Cristina Pompi (Ufficio Idrografico e Mareografico della Regione Lazio) for providing the weather data. The authors also wish to thank Sheila Beatty for improving the English usage in the manuscript. Finally, the Grant to the Department of Science, Roma Tre University (MIUR-Italy Dipartimenti di Eccellenza, Articolo 1, Commi 314-337 Legge 232/2016) is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marzialetti Flavio.

Supplementary Information

ESM 1

(PDF 585 kb)

ESM 2

(PDF 641 kb)

ESM 3

(PDF 257 kb)

ESM 4

(PDF 543 kb)

ESM 5

(PDF 3422 kb)

ESM 6

(PDF 864 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cutini, M., Flavio, M., Giuliana, B. et al. Bioclimatic pattern in a Mediterranean mountain area: assessment from a classification approach on a regional scale. Int J Biometeorol 65, 1085–1097 (2021). https://doi.org/10.1007/s00484-021-02089-x

Download citation

Keywords

  • Bioclimatology
  • Bioclimatic classification
  • Bioclimatic indices
  • Central Apennine
  • Climate change
  • Summer drought and sub-drought