Skip to main content

The impact of livestock grazing on the evapotranspiration-vegetation biomass relationship in a Southern Hemisphere salt marsh, Buenos Aires (Argentina)

Abstract

Among the ecosystem services provided by salt marshes is the use of their natural vegetation as pastures for livestock production. As a result, the prediction of biomass productivity can be of great interest for the sustainable management of these environments. Evapotranspiration is one of the variables most used to estimate the yield of green biomass in pastures and crops, which to date has not been examined for natural environments such as salt marshes. We studied the aboveground biomass and species cover variability for two categories (erect and sward plants) in three plots affected by low, moderate, and high cattle grazing. Erect biomass was associated only with Spartina densiflora while for sward plants it gathered a diverse set of prostrate and stoloniferous species with high seasonal turnover. The evapotranspiration was estimated with a coupled surface resistance—Penman-Monteith model developed for these environments. The biomass of the plant categories shows different growth response according to livestock impact. S. densiflora has a slow-growing response after cattle consumption, even with high evapotranspiration. On the other hand, sward plants respond with biomass overproduction to livestock consumption, and a significantly positive relationship to evapotranspiration rate.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Augustine DJ, McNaughton SJ (1998) Ungulate effects on the functional species composition of plant communities: herbivore selectivity and plant tolerance. J Wildl Manag 62:1165–1183

  2. Bascand LD (1970) The roles of Spartina species in New Zealand. Proc N Z J Ecol 17:33–40

    Google Scholar 

  3. Bautista NE, Gassmann MI, Pérez CF (2020) Modeling ecosystem respiration, gross primary productivity, and net ecosystem exchange of a Southern Hemisphere salt marsh. 2020 AmeriFlux Annual Meeting, 6–8 October 2020. Online Conference

  4. Bremer DJ, Auen LM, Ham JM, Owensby CE (2001) Evapotranspiration in a prairie ecosystem: effects of grazing by cattle. Agron J 93:338–348

    Article  Google Scholar 

  5. Bromberg Gedan K, Silliman BR, Bertness MD (2009) Centuries of human-driven change in salt marsh ecosystem. Annu Rev Mar Sci 1:117–141

    Article  Google Scholar 

  6. Byrnes RC, Eastburn DJ, Tate KW, Roche LM (2018) A global meta-analysis of grazing impacts on soil health indicators. J Environ Qual 47:758–765. https://doi.org/10.2134/jeq2017.08.0313

    CAS  Article  Google Scholar 

  7. Cabrera AL (1968) Vegetación de la Provincia de Buenos Aires. Flora de la Provincia de Buenos Aires, parte I. In: Cabrera AL (ed) Colección Científica del INTA. Buenos Aires, Argentina, pp 101–123

    Google Scholar 

  8. Cabrera AL (1976) Regiones Fitogeográficas Argentinas. Enciclopedia Argentina de Agricultura y Jardinería. ACME. T. II, Buenos Aires

  9. Cabrera AL, Zardini E (1993) Manual de la Flora de los Alrededores de Buenos Aires, 2nd edn. Editorial Buenos Aires, Buenos Aires

    Google Scholar 

  10. Chaichi MR, Saravi MM, Malekian A (2005) Effects of livestock trampling on soil physical properties and vegetation cover (case study: Lar Rangeland, Iran). Int J Agric Biol 7(6):904–908

    Google Scholar 

  11. Crush JR, Thom ER (2011) Review: The effects of soil compaction on root penetration, pasture growth and persistence. Pasture Persistence - Grassland Res Pract Series 15:73–78

    Google Scholar 

  12. Davidson KE, Fowler MS, Skov MW, Doerr SH, Beaumont N, Griffin JN (2017) Livestock grazing alters multiple ecosystem properties and services in salt marshes: a meta-analysis. J Appl Ecol 54:1395–1405. https://doi.org/10.11111/1365-2665.12892

    CAS  Article  Google Scholar 

  13. Di Bella CE, Grimoldi AA, Rossi Lopardo MS, Escaray FJ, Ploschuk EL, Striker GG (2015) Differential growth of Spartina densiflora populations under saline flooding is related to adventitious root formation and innate root ion regulation. Funct Plant Biol 43:52–61

    Article  Google Scholar 

  14. Facelli JM (1988) Response to grazing after nine years of cattle exclusion in a Flooding Pampa grassland, Argentina. Plant Ecol 78:21–25

    Article  Google Scholar 

  15. Fahnestock JT, Knapp AK (1994) Plant responses to selective grazing by bison: interactions between light, herbivory and water stress. Plant Ecol 115:123–131

    Google Scholar 

  16. Falge E, Baldocchi D, Olson R, Anthony P, Aubinet M (2001) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Met 107:43–69

    Article  Google Scholar 

  17. Foken T (2008) Micrometeorology. Springer Verlag, 306 pp

  18. Gassmann MI, Tonti NE, Burek A, Pérez CF (2019) Estimation of evapotranspiration of a salt marsh in southern South America with coupled Penman-Monteith and surface resistance models. Agric For Meteorol 266-267:109–118. https://doi.org/10.1016/j.agrformet.2018.12.0

    Article  Google Scholar 

  19. Glok Galli M, Martínez DE, Kruse EE (2014) The carbon budget of a large catchment in the Argentine Pampa plain through hydrochemical modeling. Science of The Total Environment 493:649–655

  20. Gomboev B, Sekulich I, Pykhalaova T, Anenkhonov O, Tsybikova A, Mognonova O, Borisova T, Beshentsev A (1996) The present condition and use of pasture in the Barguzin valley. In: Humphrey C, Sneath D (eds) Culture and environment in inner Asia, vol 1. White Horse Press, Cambridge, pp 124–140

    Google Scholar 

  21. González Trilla G, De Marco S, Marcovecchio J, Vicari R, Kandus P (2010) Net primary productivity of Spartina densiflora Brong. in an SW Atlantic coastal salt marsh. Estuaries Coast 33:953–962

    Article  Google Scholar 

  22. Graham SL, Kochendorfer J, McMillan AMS, Duncan MJ, Srinivasan MS, Hertzog G (2016) Effects of agricultural management on measurements, prediction, and partitioning of evapotranspiration in irrigated grasslands. Agric Water Manag 177:340–347

    Article  Google Scholar 

  23. Hatvany MG (2003) Marshlands: four centuries of environmental change on the shores of the St. Lawrence. Les Presses de l’Universite Laval, Quebec

    Google Scholar 

  24. Hughes CE, Kalma JD, Binning P, Willgoose GR, Vertzonis M (2001) Estimating evapotranspiration for a temperate salt marsh, Newcastle, Australia. Hydrol Process 15:957–975

    Article  Google Scholar 

  25. Isla FI, Gaido ES (2001) Vegetación del área de la laguna de Mar Chiquita. In: Iribarne O (ed) Reserva de Biósfera Mar Chiquita: Características físicas, biológicas y ecológicas. Editorial Martín, Mar del Plata, pp 19–30

    Google Scholar 

  26. Järemo J, Palmqvist E (2001) Plant compensatory growth: a conquering strategy in plant–herbivore interactions? Evol Ecol 15:91–102

    Article  Google Scholar 

  27. Knottnerus OS (2005) History of human settlement, cultural change and interference with the marine environment. Helgol Mar Res 59:2–8

    Article  Google Scholar 

  28. Kunrath TR, Lemaire G, Sadras VO, Gastal F (2018) Water use efficiency in perennial forage species: interactions between nitrogen nutrition and water deficit. Field Crop Res 222:1–11

    Article  Google Scholar 

  29. León RJC (1991) Setting and vegetation. In: Coupland RT (ed) Natural grassland: introduction and western Hemisphere. Elsevier, Amsterdam, pp 380–387

    Google Scholar 

  30. Li S, Zhang L, Kang S, Tong L, Du T, Hao X, Zhao P (2015) Comparison of several surface resistance models for estimating crop evapotranspiration over the entire growing season in arid regions. Agricultural and Forest Meteorology 208:1–15

  31. Liang YM, Hazlett DL, Lauenroth WK (1989) Biomass dynamics and water-use efficiencies of five plant communities in the shortgrass steppe. Oecologia 80(2):148–153

    CAS  Article  Google Scholar 

  32. Lkhagva A, Boldgiv B, Goulden CE, Yadamsuren O, Lauenroth WK (2013) Effects of grazing on plant community structure and aboveground net primary production of semiarid boreal steppe of northern Mongolia. Grassl Sci 59:135–145

    Article  Google Scholar 

  33. McNaughton SJ (1983) Compensatory plant growth as a response to herbivory. Oikos 40:329–336

    Article  Google Scholar 

  34. Miao H, Chen S, Chen J, Zhang W, Zhang P, Wei L, Han X, Lin G (2009) Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes. Agric For Met 149:1810–1819

    Article  Google Scholar 

  35. Milchunas DG, Lauenroth WK (1993) Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecol Monogr 63:327–366

    Article  Google Scholar 

  36. Müller-Dombois D, Ellemberg H (1974) Aims and methods of vegetation ecology. John Wiley, New York

    Google Scholar 

  37. Novák V, van Genuchten MT (2008) Using the transpiration regime to estimate biomass production. Soil Sci 173(6):401–407

    Article  Google Scholar 

  38. Parodi L (1972) Enciclopedia Argentina de Agricultura y Jardinería. ACME S.A.C.I., Buenos Aires

    Google Scholar 

  39. Pérez CF, Latorre F, Stutz S, Pastorino S (2009) A two-year report of pollen influx into Tauber traps in Mar Chiquita coastal lagoon, Buenos Aires, Argentina. Aerobiologia 25:167–181

    Article  Google Scholar 

  40. Pronger J, Campbell DI, Clearwater MJ, Rutledge S, Wall AM, Schipper LA (2016) Low spatial and inter-annual variability of evaporation from a year-round intensively grazed temperate pasture system. Agric Ecosyst Environ 232:46–58

    Article  Google Scholar 

  41. Radcliffe JE (1979) Climatic and aspect influences on pasture production in New Zealand. PhD Thesis, Lincoln College, Lincoln, 365 pp

  42. Reichstein M, Flage E, Baldocchi D, Papale D, Aubinet M, Berbgier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila A, Loustau D, Matteucci G, Meyers T, Miglietta F, Ourcival JM, PumpanenJ RS, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Chang Biol 11:1–15

    Article  Google Scholar 

  43. Reta R, Martos P, Perillo GME, Piccolo MC, Ferrante A (2001) Vegetación del área de la laguna de Mar Chiquita. In: Iribarne O (ed) Reserva de Biósfera Mar Chiquita: Características físicas, biológicas y ecológicas. Editorial Martín, Mar del Plata, pp 31–52

    Google Scholar 

  44. Robinson C (2015) The water conundrum of planting cover crops in the Great Plains: when is an inch not an inch? Crop Soils Mag Am Soc Agron, Jan-Feb, 24–35. https://doi.org/10.2134/cs2915-48-1-7

  45. Roitman G, Preliasco P (2018a) Herbaceous recognition guide of the depressed Pampa. Management characteristics. In: Gardening Cathedra, Faculty of Agronomy, 2nd edn. Publishers: University of Buenos Aires and Wild Life Argentina, Argentina, p 138

    Google Scholar 

  46. Rosset M, Montani M, Tanner M, Fuhrer J (2001) Effects of abandonment on the energy balance and evapotranspiration of wet subalpine grassland. Agric Ecosyst Environ 86:277–286

    Article  Google Scholar 

  47. Sala OE, Oesterheld M, Leon RJC, Soriano A, Oesterheldt M (1986) Grazing effects upon plant community structure in subhumid grasslands of Argentina. Vegetatio 67:27–32

    Google Scholar 

  48. Stewart JB, Verma SB (1992) Comparison of surface fluxes and conductances at two contrasting sites within the FIFE area. J Geophys Res Atmos 97:18623–18628

    Article  Google Scholar 

  49. Stutz S (2001) Vegetación del área de la laguna de Mar Chiquita. In: Iribarne O (ed) Reserva de Biósfera Mar Chiquita: Características físicas, biológicas y ecológicas. Editorial Martín, Mar del Plata, pp 75–78

    Google Scholar 

  50. Szejba D (2012) Evapotranspiration of grasslands and pastures in north-eastern part of Poland. In: Irmak A (ed) Evapotranspiration-remote sensing and modeling. InTech, Rijeka, pp 179–196

  51. Tonti NE (2016) Estudio de los flujos turbulentos de energía y masa a través del uso de la metodología de covarianzas turbulentas sobre un ecosistema de marisma. PHD Thesis. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires 03–30. http://digital.bl.fcen.uba.ar/Download/Tesis/Tesis_5959_Tonti.pdf. Accessed May 2020

  52. Tonti NE, Gassmann MI, Pérez CF (2018) First results of energy and mass exchange in a salt marsh in southeastern South America. Agric Forest Met 263:59–68

  53. Triana F, di Nasso N, Ragaglini G, Roncucci N, Bonari E (2015) Evapotranspiration, crop coefficient and water use efficiency of giant reed (Arundodonax L.) and miscanthus (Miscanthus x giganteus Greefet Deu.) in a Mediterranean environment. GCB Bioenergy 7:811–819. https://doi.org/10.1111/gcbb.12172

  54. Vera F, Gutiérrez J, Ribeiro PD (2009) Aerial and detritus production of the cordgrass Spartina densiflora in a southwestern Atlantic salt marsh. Botany 87:482–491

  55. Vermeire LT, Strong DJ, Waterman RC (2018) Grazing history effects on rangeland biomass, cover and diversity responses to fire and grazing utilization. Rangel Ecol Manag 71(6):770–775. https://doi.org/10.1016/j.rama.2018.05.001

  56. Vervoorst F (1967) La vegetación de la República Argentina VII. Las comunidades vegetales de la Depresión del Salado (Provincia de Buenos Aires). INTA, Serie Fitogeográfica 7, Buenos Aires, 262 pp

  57. Vickery PJ (1972) Grazing and net primary production of a temperate grassland. J Appl Ecol 9:307–314

    Article  Google Scholar 

  58. Wang L, Liu H, Ketzer B, Horn R, Bernhofer C (2012) Effect of grazing intensity on evapotranspiration in semiarid grasslands of Inner Mongolia, China. J Arid Environ 83:15–24

    Article  Google Scholar 

  59. WMO, (1972). Climatic Atlas of South America, Vol 1. Hoffmann J (Ed.) World Meteorological Organization

Web references

  1. Catalog of Vascular Plants from the Southern Cone, 2019. http://www.darwin.edu.ar/Proyectos/FloraArgentina/fa.htm. (accessed 1 July 2019)

  2. Roitman G, Preliasco P (2018b) Recognition guide of the depressed Pampa herbs: management characteristics. In Spanish: Guía de reconocimiento de herbáceas de la Pampa Deprimida: Características para su manejo, second edition Faculty of Agronomy, University of Buenos Aires and Wildlife Foundation of Argentina, 132 pp. https://issuu.com/avesargentinas/does/guia_pastos_completa_imprenta_baja (accessed 2 July 2019)

Download references

Acknowledgments

The authors are very grateful to the anonymous reviewers for their useful comments and constructive suggestions. We especially thank the owners and workers of “Estancia Antonio Romano S.A.” for allowing us to locate the sampling site and taking care of the equipment.

Funding

This work was supported by the National Council of Technical and Scientific Research (CONICET, grant PIP N° 11220130100347CO) and by the University of Buenos Aires (grant UBACyT 2018-2020 N° 20020170100015BA).

Author information

Affiliations

Authors

Corresponding author

Correspondence to María Gassmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary information

ESM 1

(PDF 312 kb)

ESM 2

(PDF 238 kb)

ESM 3

(PDF 206 kb)

ESM 4

(PDF 333 kb)

ESM 5

(PDF 179 kb)

ESM 6

(PDF 289 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gassmann, M., Pérez, C., Tonti, N. et al. The impact of livestock grazing on the evapotranspiration-vegetation biomass relationship in a Southern Hemisphere salt marsh, Buenos Aires (Argentina). Int J Biometeorol 65, 873–882 (2021). https://doi.org/10.1007/s00484-020-02065-x

Download citation

Keywords

  • Penman-Monteith
  • Spartina
  • Biomass productivity
  • Herbivory
  • Mar Chiquita