Skip to main content

Toward the creation of an ontology for the coupling of atmospheric electricity with biological systems

Abstract

Atmospheric electric fields (AEFs) are produced by both natural processes and electrical infrastructure and are increasingly recognized to influence and interfere with various organisms and biological processes, including human well-being. Atmospheric electric fields, in particular electromagnetic fields (EMFs), currently attract a lot of scientific attention due to emerging technologies such as 5G and satellite internet. However, a broader retrospective analysis of available data for both natural and artificial AEFs and EMFs is hampered due to a lack of a semantic approach, preventing data sharing and advancing our understanding of its intrinsic links. Therefore, here we create an ontology (ENET_Ont) for existing (big) data on AEFs within the context of biological systems that is derived from different disciplines that are distributed over many databases. Establishing an environment for data sharing provided by the proposed ontology approach will increase the value of existing data and facilitate reusability for other communities, especially those focusing on public health, ecology, environmental health, biology, climatology as well as bioinformatics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • AEM (Atmospheric Electricity network), https://dataspace.atmospheric-electricity-net.eu/variables, Accesses 2.10.2020

  • Apollonio F, Liberti M, Paffi A, Merla C, Marracino P, Denzi A, Marino C, d’Inzeo G (May 2013) Feasibility for microwaves energy to affect biological systems via nonthermal mechanisms: a systematic approach. IEEE Transact Microwave Theory Techn 61(5):2031–2045. https://doi.org/10.1109/TMTT.2013.2250298

    Article  Google Scholar 

  • Bandeira J, et al., FOCA: a methodology for ontology evaluation, arXiv:1612.03353v2 [cs.AI] 2 Sep 2017

  • Barouki R, Audouze K, Coumoul X, Demenais F, Gauguier D (2018) Integration of human exposome with the human genome to advance medicine. Biochimie 152:155–158

    CAS  Article  Google Scholar 

  • Barry S, Michael A, Cornelius R, Jonathan B, William B, Ceusters W, Louis J (2007) Goldberg, et al.: The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25:1251–1255

    Article  Google Scholar 

  • Bór J, Zelkó Z, Hegedüs T, Jäger Z, Mlynarczyk J, Popek M, Betz HD (2018) On the series of +CG lightning strokes in dancing sprite events. J Geophys Res: Atmos 123. https://doi.org/10.1029/2017JD028251

  • Boyles RR, Thessen AE, Waldrop A, Haendel MA (2019)Ontology-based data integration for advancing toxicological knowledge. Curr Opin Toxicol 16:67–74. https://doi.org/10.1016/j.cotox.2019.05.005

    Article  Google Scholar 

  • Card SK, Mackinlay JD, Shneiderman B (1999) Information visualization: using vision to think. Morgan-Kaufmann, San Francisco

    Google Scholar 

  • Cheatham M et al. (2017) Special issue on ontology and linked data matching. pp 2. https://doi.org/10.3233/SW-160251

  • CHEBI, https://www.ebi.ac.uk/chebi/, Accessed 10.1.2020

  • Chi Ed H, Riedl JT (1998) An operator interaction framework for visualization systems. Symposium on Information Visualization (InfoVis ‘98), Research Triangle Park, North Carolina pp 63–70

  • Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105(3):223–246. https://doi.org/10.1016/j.pbiomolbio.2010.07.003

    CAS  Article  Google Scholar 

  • Clarke D, Whitney H, Sutton G, Robert D (2013) Detection and learning of floral electric fields by bumblebees. Science 340(6128):66–69

    CAS  Article  Google Scholar 

  • Conceição R, Silva HG, Bennett A, Salgado R, Bortoli D, Costa MJ, Pereira MC (2018)High-frequency response of the atmospheric electric potential gradient under strong and dry boundary-layer convection. Bound-Layer Meteorol 166:69–81

    Article  Google Scholar 

  • Dagnino S, Macherone A (Editors) (2019) Unraveling the exposome, a practical view, ISBN 978-3-319-89320-4 ISBN 978-3-319-89321-1(eBook)https://doi.org/10.1007/978-3-319-89321-1, Springer

  • Dimitrievski A, Savoska S, Chorbev I, Ristevski B, Trajkovik V (2019) Data processing within ambient assisted living system, In IX International Conference on Applied Internet and Information Technologies (AIIT 2019), Zrenjanin, Serbia, pp. 65–69, ISBN 978-86-7672-327-0

  • ECA data, https://dataspace.atmospheric-electricity-net.eu/, Accessed 10.10.2019

  • ECA link, https://www.atmospheric-electricity-net.eu/. Accessed 28.9.2019

  • ECA-CP Electronet cost action – Common projects, https://atmospheric-electricity-net.eu/sites/default/files/2017-07/gapg3.pdf, Accessed 29.9.2019

  • ECA-LAD, Electronet cost action - List of available data, https://atmospheric-electricity-net.eu/node/113, Accessed 1.10.2019

  • El-Sappagh S, Kwak D, Ali F et al (2018) DMTO: a realistic ontology for standard diabetes mellitus treatment. J Biomed Semant 9:8. https://doi.org/10.1186/s13326-018-0176-y

    Article  Google Scholar 

  • (EMF DB) EMF Studies Database, http://ieee-emf.com/, Accessed 5.10.2019

  • EnvO, Environmental Ontology -http://www.ontobee.org/ontology/ENVO, https://www.ebi.ac.uk/ols/ontologies/envo. Accessed 21.1.2020

  • Fankam C. OntoDB2: Support of multiple ontology models within ontology based database, EDBT2008, Ph.D Workshop’08 March 25, 2008, Nantes, France, ACM 978-1-59593-926-5/08/0003

  • Fdez-Arroyabe P, Kourtidis K, Haldoupis C. et al (2020) Glossary on atmospheric electricity and its effects on biology. Int J Biometeorol. https://doi.org/10.1007/s00484-020-02013-9

  • Fernandez J et al (2018) Selenium at the redox interface of the genome, metabolome and exposome. Free Radic Biol Med 127:215–227

    Article  Google Scholar 

  • Ferrario R, Grȕninger M (eds) (2017) Applied ontology: a forward by the new Editors-in-Chief. Appl Ontol 12:1–4. https://doi.org/10.3233/AO-170178 IOS Press

  • Gawich M et al (2012) A methodology for ontology building. Int J Comput Appl 56(2):0975–8887

    Google Scholar 

  • GLOCAEM (n.d.) https://glocaem.wordpress.com/, https://gtr.ukri.org/projects?ref=NE%2FN013689%2F1. Accessed 20 Dec 2019

  • GO, Gene Ontology, https://genome.cshlp.org/content/11/8/1425.short, Accessed 10.1.2020

  • Go Y-M, Jones DP (2014) Redox biology: interface of the exposome with the proteome, epigenome and genome. Redoc Biol 2:358–360

    CAS  Article  Google Scholar 

  • Greggers U, Koch G, Schmidt V, Dürr A, Floriou-Servou A, Piepenbrock D, Göpfert MC, Menzel R (2013) Reception and learning of electric fields in bees. Proc R Soc B Biol Sci 280(1759):20130528

    Article  Google Scholar 

  • Gruber Thomas R (1995) Toward principles for the design of ontologies used for knowledge sharing? Int J Hum Comput Stud 43:907–928

    Article  Google Scholar 

  • Haldoupis C (2018) Is there a conclusive evidence on lightning-related effects on sporadic E layers? J Atmos Sol Terr Phys 172:117–121

    Article  Google Scholar 

  • Hartman S. et al., Ontology consolidation in bioinformatics, In Proc. 7th Asia-Pacific Conference on Conceptual Modeling (APCCM 2010), Brisbane, Australia

  • Hayakawa M, Hattori K, Ando Y (2004) Natural electromagnetic phenomena and electromagnetic theory: a review. IEEJ Trans Fundam Mater 124(1):72–79. https://doi.org/10.1541/ieejfms.124.72

    Article  Google Scholar 

  • Househ M, Kushniruk AW, Borycki EM (eds) (2019) Big Data, Big Challenges: a healthcare perspective: background, issues, solutions and research. In: Martin-Sanchez F (ed) Big Data challenges from an integrative exposome/expotype perspective. Springer, pp 127–142

  • Hunting ER, Harrison RG, Bruder A, van Bodegom PM, van der Geest HG, Kampfraath AA, Vorenhout M, Admiraal W, Cusell C, Gessner MO (2019) Atmospheric electricity influencing biogeochemical processes in soils and sediments. Front Physiol. https://doi.org/10.3389/fphys.2019.00378

  • Hunting ER, Matthews J, de Arróyabe Hernáez PF, England SJ, Kourtidis K, Koh K, Nicoll K, Harrison RG, Manser K, Price C, Dragovic S, Cifra M, Odzimek A, Robert D (2020) Challenges in coupling atmospheric electricity with biological systems. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01960-7

  • Karagodin A, Rozanov E, Mareev E, Mironova I, Volodin E, Golubenko K (2019) The representation of ionospheric potential in the global chemistry-climate model SOCOL. Sci Total Environ 697(2019):134172

    CAS  Article  Google Scholar 

  • Katifori A, Lepouras G, Vassilakis C, Giannopoulou E (2007) Ontology visualization methods—a survey, ACM Computing Surveys, Vol. 39, No. 4, Article 10, Publication date: October

  • Komisar A, Fox MS (2017) An Energy Ontology for Global City Indicators (ISO37120). Technical report, University of Toronto, https://doi.org/10.13140/RG.2.2.27553.43368

  • Krotkiewicz M. and Wojtkiewicz K., An introduction to ontology based structured knowledge system: knowledge acquisition module, ACIIDS 2013, Part I, LNAI7802, pp. 479–506, 2013

  • Lacasta J, Nogueras-Iso J, Zarazoga-Soria FJ (2010) Terminological ontology, design, management and practical applications, Springer. DOI https://doi.org/10.1007/978-1-4419-6981-1

  • Lassila O, MacGuinness D (2001) The role of frame-based representations on the semantic web. Technical Report KSL-01-02, Knowledge Systems Laboratory, Standford University, Standford, California

  • Li T, Chubak P, Lakshmanan L, Pottinger R (2012) Efficient Extraction of Ontologies from Domain Specific Text Corpora. In: CIKM '12: Proceedings of the 21st ACM international conference on Information and knowledge management, pp 1537–1541. https://doi.org/10.1145/2396761.2398468

  • Lindlay J, et al. (2017) Why the Internet of Things needs object oriented ontology, The Design Journal, Volume 20, 2017 - Design for Next: Proceedings of the 12th European Academy of Design Conference, Sapienza University of Rome, 12–14 April 2017, ISBN 978-1-138-09023-1

  • Lopez-Campos G et al (2017) Biomedical informatics and the digital component of the exposeome. MEDINFO. https://doi.org/10.3233/978-1-61499-830-3-496

  • Ming T, Kaoru O, Dong M (2017)Ontology-based data semantic management and application in IoT- and cloudenabled smart homes. Future Gener Comput Syst 76:528–539

    Article  Google Scholar 

  • Mironova I, Bazilevskaya G, Kovaltsov G, Artamonov A, Rozanov E, Mishev A, Makhmutov V, Karagodin A, Golubenko K (2019) Spectra of high energy electron precipitation and atmospheric ionization rates retrieval from balloon measurements. Sci Total Environ 693:133242. https://doi.org/10.1016/j.scitotenv.2019.07.048

    CAS  Article  Google Scholar 

  • MobApp -Mobile Application OxiAlert-Beta (n.d.) https://play.google.com/store/apps/details?id=es.geobiomet.oxyalert&hl=es. Accessed 28 Sep 2019

  • Morley EL, Robert D (2018) Electric fields elicit ballooning in spiders. Curr Biol 28(14):2324–2330

    CAS  Article  Google Scholar 

  • Muller H et al. (2009) “Connecting genes with diseases,” 2009 13th International Conference Information Visualisation, Barcelona, pp. 323–330, doi: https://doi.org/10.1109/IV.2009.86

  • Nicoll KA, Harrison RG, Barta V, Bor J, Brugge R, Chillingarian A, Chum J, Georgoulias AK, Guha A, Kourtidis K, Kubicki M, Mareev E, Matthews J, Mkrtchyan H, Odzimek A, Raulin J-P, Robert D, Silva H, Tacza J, Yair Y, Yaniv R (2019) A global atmospheric electricity monitoring network for climate and geophysical research. J Atmos Sol Terr Phys 184:18–29. https://doi.org/10.1016/j.jastp.2019.01.003

    Article  Google Scholar 

  • NLDN project (n.d.) https://www.vaisala.com/en/products/data-subscriptions-and-reports/data-sets/nldn. Accessed 20 Oct 2020

  • Noy N, Kunnatur S, Klein M, Musen M (2004) Tracking changes during ontology evolution. In: McIlraith SA, Plexousakis D, van Harmelen F (eds) The Semantic Web – ISWC 2004. ISWC 2004. Lecture Notes in Computer Science, vol 3298. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30475-3_19

  • Patience B, Noyes Pamela D, Casey Warren M, Dix David J (2017) Application of adverse outcome pathways to U.S. EPA’s endocrine disruptor screening program. Environ Health Perspect 125:096001

    Article  Google Scholar 

  • Poole D, Smyth C, Sharma R (2009) Ontology design for scientific theories that make probabilistic predictions, IEEE Computer Society, 1541–1672/09

  • Pathak J, Kiefer RC, Bielinski SJ,Chute CG (2012) Mining the human phenome using semantic web technologies: a case study for type 2 Diabetes. AMIA ... Annual symposium proceedings/AMIA symposium. AMIA Symposium 2012. pp 699–708

  • Pöschl U (2005) “Atmospheric aerosols: composition, transformation, climate and health effects.” AngewandteChemie International Edition 44, no. 46: 7520–40. https://doi.org/10.1002/anie.200501122

  • Prácser E, Bozóki T, Sátori G, Williams E, Guha A, Yu H (2019) Reconstruction of global lightning activity based on Schumann resonance measurement: model description and synthetic tests. Radio Sci 54:254–267

    Article  Google Scholar 

  • Protégée, https://webprotege.stanford.edu/#projects/2f49d021-41f9-4bd3-a8d8-6a577e3ddcb7/edit/Classes?selection=Class(owl:Thing), Accessesed 25.10.2020

  • Repacholi MH, Greenebaum B (1999) Interaction of static and extremely low frequency electric and magnetic fields with living systems: health effects and research needs. Bioelectromagnetics 20(3):133–160

    CAS  Article  Google Scholar 

  • Rooney Andrew A, Boyles Abee L, Wolfe Mary S, Bucher John R, Thayer Kristina A (2014) Systematic review and evidence integration for literature-based environmental health science assessments. Environ Health Perspect 122:711–718

    CAS  Article  Google Scholar 

  • ROSHYDROMET (n.d.) http://global-climate-change.ru/index.php/en/roshydromet. Accessed 10 Oct 2020

  • Saad A, Shaharin S (2016) The methodology for ontology development in lesson plan domain. Int J Adv Comput Sci Appl 7(4)

  • Salari V, Barzanjeh SH, Cifra M, Simon C, Scholkmann F, Alirezaei Z, Tuszynski JA (2018) Electromagnetic fields and optomechanics in cancer diagnostics and treatment. Front Biosci Landmark 23:1391–1406

    Google Scholar 

  • Savoska S et al., “Towards integration exposome data and personal health records in the age of IoT”, In the 11th ICT Innovations Conference 2019 Web Proceedings, EMBNet Workshop, Ohrid, Republic of North Macedonia, October, 2019, pp. 237–246, ISSN 1857-7288

  • Smith B, Ashburner M, Rosse C, Bard J, Bug W, Werner C, Louis J, Goldberg, et al (2017) The OBO Foundry: coordinated evolution of ontologies to supportbiomedical data integration. Nat Biotechnol 25:1251–1255

  • Shu G, Avis NJ, Rana OF (2006) Investigating visualization ontologies. Presented at: UK e-Science All Hands Meeting 2006, Nottingham, UK, 18th - 21st September 2006. Published in: Cox, Simon J. ed. Proceedings of the UK e-Science All Hands Meeting 2006. Edinburgh, UK: National e-Science Centre, pp 249–256

  • Sureephong P et al (2008) An ontology-based knowledge management system for industry clusters. In: Yan XT, Ion WJ, Eynard B (eds) Global design to gain a competitive edge. Springer, London. https://doi.org/10.1007/978-1-84800-239-5_33

  • Tsong TY, Astumian RD (1986)863—Absorption and conversion of electric field energy by membrane bound ATPases. Bioelectrochem Bioenerg 15(3):457–476

    CAS  Article  Google Scholar 

  • UBE- UBERON Ontology, http://www.ontobee.org/ontology/UBERON, Accessed 10.1.2020

  • Ushold M, King M (n.d.) Towards a methodology for building ontologies. In: workshop on basic ontological issues in knowledge sharing, held in conjunction with IJCAI-95

  • Web Protegee, Stanford university, https://webprotege.stanford.edu, Accessed 4.10.2019

  • Wild CP (2005) Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Biomark Prev 14:1847–1850

    CAS  Article  Google Scholar 

  • Wild CP (2012) The exposome: from concept to utility. Int.J.Epidemiol. 41:23–32

    Article  Google Scholar 

  • WWLLNN (n.d.) project, http://wwlln.net/

  • Yair Y, Reuveni Y, Katz S, Price C, Yaniv R (2019) Strong electric fields observed during snow storms on Mt. Hermon, Israel. Atmos Res 215:208–213

    Article  Google Scholar 

Download references

Funding

This article is based upon work from COST Action Electronet (CA15211), supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Snezana Savoska.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Savoska, S., Fdez-Arroyabe, P., Cifra, M. et al. Toward the creation of an ontology for the coupling of atmospheric electricity with biological systems. Int J Biometeorol 65, 31–44 (2021). https://doi.org/10.1007/s00484-020-02051-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-02051-3

Keywords

  • Ontology
  • Atmospheric electric fields (AEF)
  • Biological systems
  • Exposome