In vitro evaluation of potential benefits of a silica-rich thermal water (Monfortinho Thermal Water) in hyperkeratotic skin conditions

Abstract

Thermal therapy has gained popularity over the years, and Portugal is one of the richest European countries in mineral therapeutic waters. The interest in the use of these natural mineral waters (NMW) for dermatologic purposes is continuously growing but there is a lack of scientific studies supporting its health benefits. The study aims to investigate the effect of a silica-rich NMW in skin cell homeostasis using two representative cell lines of the epidermis and dermis, keratinocytes and fibroblasts, respectively, in addition to a macrophage cell line. Mouse skin fibroblasts, macrophages and human keratinocytes were exposed to culture medium prepared with NMW. Cell metabolism (MTT or resazurin assays) and cell proliferation (trypan blue exclusion dye assay) were investigated. Migration (scratch-wound assay) and senescence (β-galactosidase activity assay) of fibroblasts were also studied. Exposure to NMW compromised the cell metabolic state of all the cell lines tested. This impairment was more pronounced in skin keratinocytes (60% reduction) relatively to skin fibroblasts (45% reduction) or macrophages (25% reduction). Proliferation of macrophages was reduced threefold upon exposure to thermal water, compared to controls. No differences were observed in migration between fibroblasts exposed to NMW and controls, while a potentiation of senescence of these cells was observed. Our results shed light in the bioactive effects of a silica-rich NMW supporting its therapeutic use. A reduction in both cell metabolism and proliferation of keratinocytes and macrophages supports the empirical clinical benefits of this NMW in hyperkeratotic conditions, such as psoriasis and atopic dermatitis.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Data Availability

Not applicable.

References

  1. Almeida C, Madeira A, Marto J, Graça A, Pinto P, Ribeiro H (2019) Monfortinho thermal water-based creams: effects on skin hydration, psoriasis, and eczema in adults. Cosmetics 6:56. https://doi.org/10.3390/cosmetics6030056

    CAS  Article  Google Scholar 

  2. Antonelli M, Donelli D, Fioravanti A (2018) Effects of balneotherapy and spa therapy on quality of life of patients with knee osteoarthritis: a systematic review and meta-analysis. Rheumatol Int 38:1807–1824

    Article  Google Scholar 

  3. APHA (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC

    Google Scholar 

  4. Arasa J, Terencio MC, Andrés RM, Marín-Castejón A, Valcuende-Cavero F, Payá M, Montesinos MC (2019) Defective induction of COX-2 expression by psoriatic fibroblasts promotes pro-inflammatory activation of macrophages. Front Immunol 10. https://doi.org/10.3389/fimmu.2019.00536

  5. Araujo ARTS, Sarraguça MC, Ribeiro MP, Coutinho P (2017) Physicochemical fingerprinting of thermal waters of Beira interior region of Portugal. Environ Geochem Health 39:483–496. https://doi.org/10.1007/s10653-016-9829-x

    CAS  Article  Google Scholar 

  6. Aries MF, Hernandez-Pigeon H, Vaissière C, Delga H, Caruana A, Lévêque M, Bourrain M, Helffer KR, Chol B, Nguyen T, Bessou-Touya S, Castex-Rizzi N (2016) Anti-inflammatory and immunomodulatory effects of Aquaphilus dolomiae extract on in vitro models. Clin Cosmet Investig Dermatol 9:421–434. https://doi.org/10.2147/CCID.S113180

    CAS  Article  Google Scholar 

  7. Benhadou F, Di M, Del Marmol V (2019) Psoriasis: keratinocytes or immune cells - which is the trigger? Dermatology 235:91–100

    CAS  Article  Google Scholar 

  8. Berroth A, Kurschat N, Schwarz A, St F, Schwarz T, Wenck H, Neufang G (2013) Atopic dermatitis and skin disease role of fibroblasts in the pathogenesis of atopic dermatitis. J Allergy Clin Immunol 131:1547–1554.e6. https://doi.org/10.1016/j.jaci.2013.02.029

    CAS  Article  Google Scholar 

  9. Cantista P (2008) O termalismo em Portugal. An Hidrol Medica 3:79–107

    Google Scholar 

  10. Cheleschi S, Gallo I, Tenti S (2020) A comprehensive analysis to understand the mechanism of action of balneotherapy: why, how, and where they can be used? Evidence from in vitro studies performed on human and animal samples. Int J Biometeorol 64:1247–1261

    Article  Google Scholar 

  11. Coutinho P, Ribeiro M, Araujo A (2015) Dermatological potential of thermo-mineral waters from Beira Interior Region, Portugal. Conference Proceedings of 1st International Congress on Water: Healing SPA and Life Quality. http://hdl.handle.net/10314/2402. Accessed 6 Mar 2020

  12. Diário da República (1989) Indicações Terapêuticas dos Estabelecimentos Termais Portugueses. In: Diário da Repúb. https://www.dgs.pt/saude-ambiental/areas-de-intervencao/estabelecimentos-termais/legislacao-indicacoes-terapeuticas.aspx. Accessed 6 Mar 2020

  13. ​Diário da República (2008) Despacho n.º 8223/2008. In: Diário da Repub. https://dre.pt/application/conteudo/3651485. Accessed 6 Mar 2020

  14. Faga A, Nicoletti G, Gregotti C, Finotti V, Nitto A, Gioglio L (2012) Effects of thermal water on skin regeneration. Int J Mol Med 29:732–740. https://doi.org/10.3892/ijmm.2012.917

    Article  Google Scholar 

  15. Ferreira MO, Costa PC, Bahia MF (2010) Effect of São Pedro do sul thermal water on skin irritation. Int J Cosmet Sci 32:205–210. https://doi.org/10.1111/j.1468-2494.2010.00527.x

    CAS  Article  Google Scholar 

  16. Ferreira R, Santos T, Cortes L, Cochaud S, Agasse F, Silva AP, Xapelli S, Malva JO (2012) Neuropeptide y inhibits interleukin-1 beta-induced microglia motility. J Neurochem 120:93–105. https://doi.org/10.1111/j.1471-4159.2011.07541.x

    CAS  Article  Google Scholar 

  17. Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M (2011) Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int 31:1–8

    Article  Google Scholar 

  18. Türsen B (2019) Water and Dermatology. In: França K (ed), Lotti T (ed) Advances in integrative dermatology, 1st edn. John Wiley & Sons Ltd, Hoboken, NJ, USA, pp 351-359 

  19. Gerencsér G, Szabó I, Szendi K, Hanzel A, Raposa B, Gyöngyi Z, Varga C (2019) Effects of medicinal waters on the UV-sensitivity of human keratinocytes – a comparative pilot study. Int J Biometeorol 63:1417–1423. https://doi.org/10.1007/s00484-019-01759-1

    Article  Google Scholar 

  20. Gomes C, Rocha F, Silva E, Patinha C, Forjaz V, Terroso D (2010)  Benefits of Mud / Clay and Thermal Spring Water in the human heath. Conference Proceedings of environment 2010: situation and perspectives for the European Union. https://www.semanticscholar.org/paper/Benefits-of-Mud-%2F-Clay-and-Thermal-Spring-Water-in-Gomes-Silva/13321364da6da78fd3517191edbdf78241f2ef9f. Accessed 22 Oct 2018

  21. Gubán B, Vas K, Balog Z, Manczinger M, Bebes A, Groma G, Széll M, Kemény L, Bata-Csörgö Z (2016) Abnormal regulation of fibronectin production by fibroblasts in psoriasis. Br J Dermatol 174:533–541. https://doi.org/10.1111/bjd.14219

    CAS  Article  Google Scholar 

  22. Hercogova J, Stanghellini E, Tsoureli-Nikita E, Menchini G (2002) Inhibitory effects of Leopoldine spa water on inflammation caused by sodium lauryl sulphate. J Eur Acad Dermatol Venereol 16:263–266. https://doi.org/10.1046/j.1468-3083.2002.00451.x

    CAS  Article  Google Scholar 

  23. INFARMED - Instituto Nacional da Farmácia e do Medicamento (2009) Farmacopeia portuguesa 9. INFARMED, Lisboa

  24. Joly F, Galoppin L, Bordat P, Cousse H, Neuzil E (2000) Calcium and bicarbonate ions mediate the inhibition of mast cell histamine release by Avène spa water. Fundam Clin Pharmacol 14:611–613. https://doi.org/10.1111/j.1472-8206.2000.tb00447.x

    CAS  Article  Google Scholar 

  25. Lee HP, Choi YJ, Cho KA, Woo SY, Yun ST, Lee JT, Kim HJ, Lee KH, Kim JW (2012) Effect of spa spring water on cytokine expression in human keratinocyte HaCaT cells and on differentiation of CD4+T cells. Ann Dermatol 24:324–336. https://doi.org/10.5021/ad.2012.24.3.324

    CAS  Article  Google Scholar 

  26. Leite Dantas R, Masemann D, Schied T, Bergmeier V, Vogl T, Loser K, Brachvogel B, Varga G, Ludwig S, Wixler V (2016) Macrophage-mediated psoriasis can be suppressed by regulatory T lymphocytes. J Pathol 240:366–377. https://doi.org/10.1002/path.4786

    CAS  Article  Google Scholar 

  27. Li J, Li X, Hou R, Liu R, Zhao X, Dong F, Wang C, Yin G, Zhang K (2015) Psoriatic T cells reduce epidermal turnover time and affect cell proliferation contributed from differential gene expression. J Dermatol 42:874–880. https://doi.org/10.1111/1346-8138.12961

    CAS  Article  Google Scholar 

  28. Matz H, Orion E, Wolf R (2003) Balneotherapy in dermatology. Dermatol Ther 16:132–140. https://doi.org/10.1046/j.1529-8019.2003.01622.x

    Article  Google Scholar 

  29. Moura LI, Cruz MT, Carvalho E (2013) The effect of neurotensin in human keratinocytes - implication on impaired wound healing in diabetes. Exp biol med (Maywood):6–12. https://doi.org/10.1177/1535370213510665

  30. Nedoszytko B, Sokołowska-Wojdyło M, Ruckemann-Dziurdzińska K, Roszkiewicz J, Nowicki RJ (2014) Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis. Postep Dermatologii i Alergol 31:84–91

    Article  Google Scholar 

  31. Nicoletti G, Saler M, Pellegatta T, Malovini A, Faga A, Scalise A, Riva F (2016) Effects of a spring water on human skin fibroblast in vitro cultures: Preliminary results. Acta Vulnologica 14:196–201

    Google Scholar 

  32. Nicoletti G, Saler M, Pellegatta T, Tresoldi M, Bonfanti V, Malovini A, Faga A, Riva F (2017) Ex vivo regenerative effects of a spring water. Biomed Rep 7:508–514. https://doi.org/10.3892/br.2017.1002

    CAS  Article  Google Scholar 

  33. Nicoletti G, Saler M, Tresoldi MM, Faga A, Benedet M, Cristofolini M (2019) Regenerative effects of spring water-derived bacterial lysates on human skin fibroblast in in vitro culture: preliminary results. J Int Med Res 47:5777–5786. https://doi.org/10.1177/0300060519880371

    CAS  Article  Google Scholar 

  34. Nunes S, Tamura B (2012) Revisão histórica das águas termais. Surg Cosmet Dermatol 3:252–258

    Google Scholar 

  35. O’Brien J, Wilson I, Orton T, Pognan F (2000) Investigation of the Alamar blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. Eur J Biochem 267:5421–5426. https://doi.org/10.1046/j.1432-1327.2000.01606.x

    Article  Google Scholar 

  36. Oliveira AS, Vaz CV, Silva A, Ferreira SS, Correia S, Ferreira R, Breitenfeld L, Martinez-de-Oliveira J, Palmeira-de-Oliveira R, Pereira C, Cruz MT, Palmeira-de-Oliveira A (2019) Chemical signature and antimicrobial activity of Central Portuguese Natural Mineral Waters against selected skin pathogens. Environ Geochem Health 6:2057. https://doi.org/10.1007/s10653-019-00473-6

    CAS  Article  Google Scholar 

  37. Proksch E (2018) Buffering capacity. Curr Probl Dermatology 54:11–18. https://doi.org/10.1159/000489513

    Article  Google Scholar 

  38. Quattrini S, Pampaloni B, Brandi ML (2016) Natural mineral waters: chemical characteristics and health effects. Clin Cases Miner Bone Metab 13:173. https://doi.org/10.11138/CCMBM/2016.13.3.173

    Article  Google Scholar 

  39. Rebelo M, da Silva EF, Rocha F (2015) Characterization of Portuguese thermo-mineral waters to be applied in peloids maturation. Environ Earth Sci 73:2843–2862. https://doi.org/10.1007/s12665-014-3670-2

    CAS  Article  Google Scholar 

  40. Riyaz N, Arakkal FR (2011) Spa therapy in dermatology. Indian J Dermatol Venereol Leprol 77:128–134. https://doi.org/10.4103/0378-6323.77450

    Article  Google Scholar 

  41. Sukenik S, Flusser D, Abu-Shakra M (1999) The role of Spa therapy in various rheumatic diseases. Rheum Dis Clin N Am 25:883–897. https://doi.org/10.1016/S0889-857X(05)70108-3

    CAS  Article  Google Scholar 

  42. Valitutti S, Castellino F, Musiani P (1990) Effect of sulfurous (thermal) water on T lymphocyte proliferative response. Ann Allergy 65:463–468

    CAS  Google Scholar 

  43. Varga C (2019) To treat or not to treat? Misbeliefs in spa water disinfection. Int J Biometeorol 63:1135–1138. https://doi.org/10.1007/s00484-019-01722-0

    Article  Google Scholar 

  44. Wang AS, Dreesen O (2018) Biomarkers of cellular senescence and skin aging. Front Genet 9:247

    Article  Google Scholar 

  45. Zöller N, Valesky E, Hofmann M, Bereiter-Hahn J, Bernd A, Kaufmann R, Meissner M, Kippenberger S (2015a) Impact of different spa waters on inflammation parameters in human keratinocyte HaCaT cells. Ann Dermatol 27:709–714. https://doi.org/10.5021/ad.2015.27.6.709

    CAS  Article  Google Scholar 

  46. Zöller N, Valesky E, Hofmann M, Bereiter-Hahn J, Bernd A, Kaufmann R, Meissner M, Kippenberger S (2015b) Impact of different spa waters on inflammation parameters in human keratinocyte HaCaT cells. Ann Dermatol 27:709–714. https://doi.org/10.5021/ad.2015.27.6.709

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Monfortinho Thermal Centre for participating in this study. The authors acknowledge financial support provided by FEDER - European Regional Development Fund, through the POCI-COMPETE 2020 - Operational Programme Competitiveness and Internationalization in Axis I - Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491); National Funds by FCT - Foundation for Science and Technology (Project UIDB/00709/2020); and Provere Termas Centro – Projeto Âncora de Inovação, co-funded by Centro 2020, Portugal 2020 and European Union funds (PROVERE CENTRO-04-3928-FEDER-000010).

Funding

POCI-COMPETE 2020- Operational Programme Competitiveness and Internationalization in Axis I - Strengthening research, technological development and innovation (Project POCI-01-0145-FEDER-007491).

FCT - Foundation for Science and Technology (Project UIDB/00709/2020).

Provere Termas Centro – Projeto Âncora de Inovação, co-funded by Centro 2020, Portugal 2020 and European Union funds (PROVERE CENTRO-04-3928-FEDER-000010).

Author information

Affiliations

Authors

Contributions

ASO performed the experiments, assembled and analysed the data, and wrote the manuscript. CVV and AS collaborated in the acquisition and assembly of data and critically revised the manuscript. SC, RF, LB, JMO, RPO and CP contributed to experimental conception and design, and critical reading and editing of the manuscript. MTC and APO contributed to experimental conception and design, data analysis and interpretation and revised the manuscript critically for important intellectual content.

All authors have read and approved the final manuscript and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Ana Palmeira-de-Oliveira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethics approval

This article does not contain studies with human participants or animals performed by any of the authors.

Code availability

Not applicable.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oliveira, A.S., Vaz, C.V., Silva, A. et al. In vitro evaluation of potential benefits of a silica-rich thermal water (Monfortinho Thermal Water) in hyperkeratotic skin conditions. Int J Biometeorol 64, 1957–1968 (2020). https://doi.org/10.1007/s00484-020-01986-x

Download citation

Keywords

  • Balneology
  • Thermal water
  • Keratinocytes
  • Macrophages
  • Cell proliferation
  • Psoriasis