Heat-related mortality at the beginning of the twenty-first century in Rio de Janeiro, Brazil

Abstract

Temperature record-breaking events, such as the observed more intense, longer-lasting, and more frequent heat waves, pose a new global challenge to health sectors worldwide. These threats are of particular interest in low-income regions with limited investments in public health and a growing urban population, such as Brazil. Here, we apply a comprehensive interdisciplinary climate-health approach, including meteorological data and a daily mortality record from the Brazilian Health System from 2000 to 2015, covering 21 cities over the Metropolitan Region of Rio de Janeiro. The percentage of absolute mortality increase due to summer extreme temperatures is estimated using a negative binomial regression modeling approach and maximum/minimum temperature-derived indexes as covariates. Moreover, this study assesses the vulnerability to thermal stress for different age groups and both genders and thoroughly analyzes four extremely intense heat waves during 2010 and 2012 regarding their impacts on the population. Results showed that the highest absolute mortality values during heat-related events were linked to circulatory illnesses. However, the highest excess of mortality was related to diabetes, particularly for women within the elderly age groups. Moreover, results indicate that accumulated heat stress conditions during consecutive days preferentially preceded by persistent periods of moderate-temperature, lead to higher excess mortality rather than sporadic single hot days. This work may provide directions in human health policies related to extreme climate events in large tropical metropolitan areas from developing countries, contributing to altering the historically based purely reactive response.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Akanji AO, Oputa RA (1991) The effect of ambient temperature on glucose tolerance and its implications for the tropics. Trop Geogr Med 43(3):283.281

    Google Scholar 

  2. Alves JED, Cavenaghi S (2012) Transições urbanas e da fecundidade e mudança dos arranjos familiares no Brasil. Cadernos de Estudos Sociais

  3. Anderson BG, Bell ML (2009) Weather-related mortality: how heat, cold, and heat waves affect mortality in the United States. Epidemiology 20:205–213. https://doi.org/10.1097/EDE.0b013e318190ee08

    Article  Google Scholar 

  4. Anderson GB, Dominici F, Wang Y, McCormack MC, Bell ML, Peng RD (2013) Heat-related Emergency Hospitalizations for Respiratory Diseases in the Medicare Population. American Journal of Respiratory and Critical Care Medicine 187(10):1098–1103

  5. Antunes L, Silva SP, Marques J, Nunes B, Antunes S (2017) The effect of extreme cold temperatures on the risk of death in the two major Portuguese cities. Int J Biometeorol 61:127–135. https://doi.org/10.1007/s00484-016-1196-x

    Article  Google Scholar 

  6. Ardiles LG, Tadano YS, Costa S, Urbina V, Capucim MN, da Silva I, Braga A, Martins JA, Martins LD (2017) Negative binomial regression model for analysis of the relationship between hospitalization and air pollution. Atmos Pollut Res 9:333–341. https://doi.org/10.1016/j.apr.2017.10.010

    CAS  Article  Google Scholar 

  7. Bell ML, O’Neill MS, Ranjit N et al (2008) Vulnerability to heat-related mortality in Latin America: a case-crossover study in São Paulo, Brazil, Santiago, Chile and Mexico City, Mexico. Int J Epidemiol 37:796–804. https://doi.org/10.1093/ije/dyn094

    Article  Google Scholar 

  8. Bitencourt DP, Fuentes MV, Maia PA, Amorim FT (2016) Frequência, Duração, Abrangência Espacial e Intensidade das Ondas de Calor no Brasil. Rev Bras Meteorol 31:506–517. https://doi.org/10.1590/0102-778631231420150077

    Article  Google Scholar 

  9. Cavenaghi SM, Alves JED (2016) Qualidade das informações sobre fecundidade no Censo Demográfico de 2010. Rev Bras Estud Popul 33:189–206. https://doi.org/10.20947/s0102-309820160010

    Article  Google Scholar 

  10. Ceccherini G, Russo S, Ameztoy I et al (2016) Magnitude and frequency of heat and cold waves in recent decades: the case of South America. Nat Hazards Earth Syst Sci 16:821–831. https://doi.org/10.5194/nhess-16-821-2016

    Article  Google Scholar 

  11. Charkha N, Ghatge A, Sharma P, Attar VZ, Patil AB (2013) Estimating risk of mortality from cardiovascular diseases using negative binomial regression. Epidemiol 3:3–6. https://doi.org/10.4172/2161-1165.1000127

  12. Coumou D, Rahmstorf S (2012) A decade of weather extremes. Nat Clim Chang 2:491–493. https://doi.org/10.1038/nclimate1452

    Article  Google Scholar 

  13. D’Ippoliti D, Michelozzi P, Marino C et al (2010) The impact of heat waves on mortality in 9 European cities: results from the EuroHEAT project. Environ Health 9:37. https://doi.org/10.1186/1476-069X-9-37

  14. Dereczynski C, Silva WL, Marengo J (2013) Detection and projections of climate change in Rio de Janeiro, Brazil. Am J Clim Chang 02:25–33. https://doi.org/10.4236/ajcc.2013.21003

    Article  Google Scholar 

  15. Fischer EM, Knutti R (2015) Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes. Nat Clim Chang 5:560–564. https://doi.org/10.1038/nclimate2617

    Article  Google Scholar 

  16. Founda D, Santamouris M (2017) Synergies between Urban Heat Island and heat waves in Athens (Greece), during an extremely hot summer (2012). Sci Rep 7:1–11. https://doi.org/10.1038/s41598-017-11407-6

    CAS  Article  Google Scholar 

  17. Garcia-Herrera R, Díaz J, Trigo RM, Luterbacher J, Fischer EM (2010) A review of the European summer heat wave of 2003. Crit Rev Environ Sci Technol 40:267–306. https://doi.org/10.1080/10643380802238137

    Article  Google Scholar 

  18. Gasparrini A, Armstrong B (2011) The impact of heat waves on mortality. Epidemiology 22:68–73. https://doi.org/10.1097/EDE.0b013e3181fdcd99

    Article  Google Scholar 

  19. Gasparrini A, Guo Y, Hashizume M (2015) Mortality risk attributable to high and low ambient temperature: a multicountry observational study. Lancet 386:369–375. https://doi.org/10.1016/S0140-6736(14)62114-0

    Article  Google Scholar 

  20. Gasparrini A, Guo Y, Sera F et al  (2017) Projections of temperature-related excess mortality under climate change scenarios. Lancet Planet Heal 1:e360–e367. https://doi.org/10.1016/S2542-5196(17)30156-0

  21. Geirinhas JL, Trigo RM, Libonati R, Coelho CAS, Palmeira AC (2018) Climatic and synoptic characterization of heat waves in Brazil. Int J Climatol 38:1760–1776. https://doi.org/10.1002/joc.5294

    Article  Google Scholar 

  22. Geirinhas JL, Trigo RM, Libonati R, Castro LCO, Sousa PM, Coelho CAS, Peres LF, Magalhães M d AFM (2019) Characterizing the atmospheric conditions during the 2010 heatwave in Rio de Janeiro marked by excessive mortality rates. Sci Total Environ 650:796–808. https://doi.org/10.1016/j.scitotenv.2018.09.060

    CAS  Article  Google Scholar 

  23. Guo Y, Gasparrini A, Li S et al (2018) Quantifying excess deaths related to heatwaves under climate change scenarios: a multicountry time series modelling study. PLoS Med 15:1–17. https://doi.org/10.1371/journal.pmed.1002629

    Article  Google Scholar 

  24. Hajat S, Armstrong B, Baccini M, Biggeri A, Bisanti L, Russo A, Paldy A, Menne B, Kosatsky T (2006) Impact of high temperatures on mortality: is there an added heat wave effect? Epidemiology 17(6):632–638. https://doi.org/10.1097/01.ede.0000239688.70829.63

    Article  Google Scholar 

  25. Hajat S, Kovats RS, Lachowycz K (2007) Heat-related and cold-related deaths in England and Wales: who is at risk? Occup Environ Med 64:93–100. https://doi.org/10.1136/oem.2006.029017

    CAS  Article  Google Scholar 

  26. Han J, Liu S, Zhang J et al (2017) The impact of temperature extremes on mortality: a time-series study in Jinan, China. BMJ Open 7:1–8. https://doi.org/10.1136/bmjopen-2016-014741

    Article  Google Scholar 

  27. Hannart A, Vera C, Otto FEL, Cerne B (2015) Causal influence of anthropogenic forcings on the argentinian heat wave of December 2013. Bull Am Meteorol Soc 96(12). https://doi.org/10.1175/BAMS-D-15-00137.1

  28. Hatvani-Kovacs G, Belusko M, Pockett J, Boland J (2016) Can the excess heat factor indicate heatwave-related morbidity? A case study in Adelaide, South Australia. Ecohealth 13:100–110. https://doi.org/10.1007/s10393-015-1085-5

    Article  Google Scholar 

  29. Herold N, Alexander L, Green D, Donat M (2017) Greater increases in temperature extremes in low versus high income countries. Environ Res Lett 12. https://doi.org/10.1088/1748-9326/aa5c43

  30. IBGE (2010) Demographic census. Instituto Brasileiro de Geografia e Estatística. https://censo2010.ibge.gov.br. Accessed Jan 2019

  31. IBGE (2018) Projeções de população: Brasil e unidades de federação: revisão 2018 / IBGE, Coordenação de População e Indicadores Sociais. https://biblioteca.ibge.gov.br/visualizacao/livros/liv101597.pdf

  32. International Diabetes Federation (2013) IDF Diabetes Atlas Update. http://www.idf.org/diabetesatlas/introduction. Accessed Sept 2019

  33. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. A special report of working groups I and II of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, p 582

    Google Scholar 

  34. IPCC (2013) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, 1585 pp

    Google Scholar 

  35. IPCC (2018) Global warming of 1.5°C. A special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of the strengthening the global response to the threat of climate change, sustainable development, and effort to eradicate

  36. Iuliano AD, Roguski KM, Chang HH et al (2018) Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. Lancet 391(10127):1285–1300. https://doi.org/10.1016/S0140-6736(17)33293-2

  37. Kenny GP, Yardley J, Brown C, Sigal RJ, Jay O (2010) Heat stress in older individuals and patients with common chronic diseases. Canadian Medical Association Journal 182(10):1053–1060

  38. Koivisto VA, Fortney S, Hendler R, Felig P (1981) A rise in ambient temperature augments insulin absorption in diabetic patients. Metabolism 30:402–405. https://doi.org/10.1016/0026-0495(81)90122-0

    CAS  Article  Google Scholar 

  39. Kovats RS, Hajat S (2008) Heat stress and public health: a critical review. Annu Rev Public Health 29:41–55. https://doi.org/10.1146/annurev.publhealth.29.020907.090843

    Article  Google Scholar 

  40. Langlois N, Herbst J, Mason K, Nairn J, Byard RW (2013) Journal of Forensic and Legal Medicine Using the Excess Heat Factor (EHF) to predict the risk of heat related deaths. J Forensic Legal Med 20:408–411. https://doi.org/10.1016/j.jflm.2012.12.005

  41. Langrish JP, Mills NL, Bath LE, Warner P, Webb DJ, Kelnar CJ, Critchley HO, Newby DE, Wallace WH (2009) Cardiovascular effects of physiological and standard sex steroid replacement regimens in premature ovarian failure. Hypertension 53:805–811. https://doi.org/10.1161/HYPERTENSIONAHA.108.126516

    CAS  Article  Google Scholar 

  42. Leon LR, Helwig BG (2010) Heat stroke: role of the systemic inflammatory response. J Appl Physiol 109:1980–1988. https://doi.org/10.1152/japplphysiol.00301.2010

    CAS  Article  Google Scholar 

  43. Leung YK, Yip KM, Yeung KH (2008) Relationship between thermal index and mortality in Hong Kong. Meteorol Appl 15:399–409. https://doi.org/10.1002/met.82

    Article  Google Scholar 

  44. Lucena AJ, Rotunno Filho OC, França JRA et al (2013) Urban climate and clues of heat island events in the metropolitan area of Rio de Janeiro. Theor Appl Climatol 111:497–511. https://doi.org/10.1007/s00704-012-0668-0

  45. Mazdiyasni O, Sengupta A, Mehran A et al (2017) Increasing probability of mortality during Indian heat waves. Sci Adv 3:e1700066. https://doi.org/10.1126/sciadv.1700066

    Article  Google Scholar 

  46. McMichael AJ, Woodruff RE, Hales S (2006) Climate change and human health: present and future risks. Lancet 367:859–869. https://doi.org/10.1016/S0140-6736(06)68079-3

    Article  Google Scholar 

  47. Mora C, Dousset B, Caldwell IR et al (2017) Global risk of deadly heat. Nat Clim Chang 7:501–506. https://doi.org/10.1038/nclimate3322

  48. Muggeo VM, Hajat S (2009) Modelling the non-linear multiple-lag effects of ambient temperature on mortality in Santiago and Palermo: a constrained segmented distributed lag approach. Occup Environ Med 66:584–591. https://doi.org/10.1136/oem.2007.038653

    CAS  Article  Google Scholar 

  49. Nairn J, Fawcett R, Ray D (2009) Defining and predicting excessive heat events, a national system. Understanding high impact weather. CAWCR technical report 017. Bureau of Meteorology, Melbourne, pp 83–86

    Google Scholar 

  50. Papalexiou SM, AghaKouchak A, Trenberth KE, Foufoula-Georgiou E (2018) Global, regional, and megacity trends in the highest temperature of the year: diagnostics and evidence for accelerating trends. Earth’s Future 6:71–79. https://doi.org/10.1002/2017EF000709

    Article  Google Scholar 

  51. Peres LF, Lucena AJ, Rotunno Filho OC, França JRA (2018) The urban heat island in Rio de Janeiro, Brazil, in the last 30 years using remote sensing data. Int J Appl Earth Obs Geoinf 64:104–116. https://doi.org/10.1016/j.jag.2017.08.012

  52. Perkins SE, Alexander LV (2013) On the measurement of heat waves. J Clim 26:4500–4517. https://doi.org/10.1175/JCLI-D-12-00383.1

    Article  Google Scholar 

  53. PwC (2011) Protecting human health and safety during severe and extreme heat events, a national framework. Report for the Commonwealth Government, PricewaterhouseCoopers Australia. http://www.pwc.com.au/industry/government/assets/extreme-heat-events-nov... Accessed Jan 2019

  54. Raei E, Nikoo MR, Aghakouchak A, Mazdiyasni O, Sadegh M (2018) GHWR, a multi-method global heatwave and warm-spell record and toolbox. Sci Data 5:1–15. https://doi.org/10.1038/sdata.2018.206

    Article  Google Scholar 

  55. Rizwan AM, Dennis LYC, Liu C (2008) A review on the generation, determination and mitigation of Urban Heat Island. J Environ Sci 20:120–128. https://doi.org/10.1016/S1001-0742(08)60019-4

    CAS  Article  Google Scholar 

  56. Russo S, Sillmann J, Sterl A (2017) Humid heat waves at different warming levels. Sci Rep 7:7477. https://doi.org/10.1038/s41598-017-07536-7

    CAS  Article  Google Scholar 

  57. Rusticucci M, Kyselý J, Almeira G, Lhotka O (2016) Long-term variability of heat waves in Argentina and recurrence probability of the severe 2008 heat wave in Buenos Aires. Theor Appl Climatol 124:679–689. https://doi.org/10.1007/s00704-015-1445-7

    Article  Google Scholar 

  58. Rusticucci M, Barrucand M, Collazo S (2017) Temperature extremes in the Argentina central region and their monthly relationship with the mean circulation and ENSO phases. Int J Climatol 37:3003–3017. https://doi.org/10.1002/joc.4895

    Article  Google Scholar 

  59. Scalley BD, Spicer T, Jian L, Xiao J, Nairn J, Robertson A, Weeramanthri T (2015) Responding to heatwave intensity: excess heat factor is a superior predictor of health service utilisation and a trigger for heatwave plans. Aust N Z J Public Health 39(6):582–587. https://doi.org/10.1111/1753-6405.12421

    Article  Google Scholar 

  60. Schifano P, Cappai G, De Sario M, Michelozzi P, Marino C, Bargagli AM, Peruci CA (2009) Susceptibility to heat wave-related mortality: a follow-up study of a cohort of elderly in Rome. Environ Health 8:50. https://doi.org/10.1186/1476-069x-8-50

    Article  Google Scholar 

  61. Sharovsky R, César LAM, Ramires JAF (2004) Temperature, air pollution, and mortality from myocardial infarction in São Paulo, Brazil. Braz J Med Biol Res 37:1651–1657. https://doi.org/10.1590/S0100-879X2004001100009

    CAS  Article  Google Scholar 

  62. Shibuya K, Yano E (2005) Regression analysis of trends in mortality from hepatocellular carcinoma in Japan, 1972–2001. Int J Epidemiol 34:397–402. https://doi.org/10.1093/ije/dyh358

    Article  Google Scholar 

  63. Son JY, Lee JT, Brooke Anderson G, Bell ML (2012) The impact of heat waves on mortality in seven major cities in Korea. Environ Health Perspect 120:566–571. https://doi.org/10.1289/ehp.1103759

    Article  Google Scholar 

  64. Son JY, Gouveia N, Bravo MA, de Freitas CU, Bell ML (2016) The impact of temperature on mortality in a subtropical city: effects of cold, heat, and heat waves in São Paulo, Brazil. Int J Biometeorol 60:113–121. https://doi.org/10.1007/s00484-015-1009-7

    Article  Google Scholar 

  65. Sun PC, Lin HD, Jao SH, Chan RC, Kao MJ, Cheng CK (2008) Thermoregulatory sudomotor dysfunction and diabetic neuropathy develop in parallel in at-risk feet. Diabet Med 25(4):413–418. https://doi.org/10.1111/j.1464-5491.2008.02395.x

    CAS  Article  Google Scholar 

  66. Trigo RM, Ramos AM, Nogueira PJ, Santos FD, Garcia-Herrera R, Gouveia C, Santo FE (2009) Evaluating the impact of extreme temperature based indices in the 2003 heatwave excessive mortality in Portugal. Environ Sci Pol 12:844–854. https://doi.org/10.1016/j.envsci.2009.07.007

    Article  Google Scholar 

  67. United Nations (2014) Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2014 Revision, Highlights. (ST/ESA/SER.A/352)

  68. Urban A, Hanzlíková H, Kyselý J, Plavcová E (2017) Impacts of the 2015 heat waves on mortality in the Czech Republic-a comparison with previous heat waves. Int J Environ Res Public Health 14:1–19. https://doi.org/10.3390/ijerph14121562

    Article  Google Scholar 

  69. Vandentorren S, Bretin P, Zeghnoun A, Mandereau-Bruno L, Croisier A, Cochet C, Ribéron J, Siberan I, Declercq B, Ledrans M (2006) August 2003 heat wave in France: risk factors for death of elderly people living at home. Eur J Pub Health 16:583–591. https://doi.org/10.1093/eurpub/ckl063

    CAS  Article  Google Scholar 

  70. Ver Hoef JM, Boveng PL (2007) Quasi-poisson vs. negative binomial regression: how should we model overdispersed count data? Publications, agencies and staff of the U.S. Department of Commerce 142. http://digitalcommons.unl.edu/usdeptcommercepub/142

  71. Watts N, Amann M, Ayeb-Karlsson S et al (2018) The Lancet Countdown on health and climate change: from 25 years of inaction to a global transformation for public health. Lancet 391:581–630. https://doi.org/10.1016/S0140-6736(17)32464-9

  72. Wilson A, Reich BJ, Nolte CG, Spero TL, Hubbell B, Rappold AG (2017) Climate change impacts on projections of excess mortality at 2030 using spatially varying ozone-temperature risk surfaces. J Expo Sci Environ Epidemiol 27:118–124. https://doi.org/10.1038/jes.2016.14

    Article  Google Scholar 

  73. WMO and WHO (2015) Heatwaves and health: guidance on warning system development. World Health Organization- No 1142. https://www.who.int/globalchange/publications/Web-release-WHO-WMO-guidance-heatwave-and-health.pdf?ua=1. Accessed Sept 2019

  74. Yang J, Yin P, Zhou M, Ou C, Li M, Liu Y, Gao J, Chen B, Liu J, Bai L, Liu Q (2016) The effect of ambient temperature on diabetes mortality in China: a multi-city time series study. Sci Total Environ 543:75–82. https://doi.org/10.1016/j.scitotenv.2015.11.014

    CAS  Article  Google Scholar 

  75. Yu W, Vaneckova P, Mengersen K, Pan X, Tong S (2010) Is the association between temperature and mortality modified by age, gender and socio-economic status? Sci Total Environ 408:3513–3518. https://doi.org/10.1016/j.scitotenv.2010.04.058

    CAS  Article  Google Scholar 

  76. Zanobetti A, Schwartz J (2008) Temperature and mortality in nine US cities. Epidemiology 19:563–570. https://doi.org/10.1097/EDE.0b013e31816d652d

    Article  Google Scholar 

  77. Zhang X, Alexander L, Hegerl GC, Jones P, Tank AK, Peterson TC, Trewin B, Zwiers FW (2011) Indices for monitoring changes in extremes based on daily temperature and precipitation data. Wiley Interdiscip Rev Clim Chang 2:851–870. https://doi.org/10.1002/wcc.147

    Article  Google Scholar 

  78. Zhao L, Oppenheimer M, Zhu Q, Baldwin JW, Ebi KL, Bou-Zeid E, Guan K, Liu X (2018) Interactions between urban heat islands and heat waves - supplementary information. Environ Res Lett 13:034003. https://doi.org/10.1088/1748-9326/aa9f73

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by project INDECIS, which is part of ERA4CS, an ERA-NET initiated by JPI Climate, with co-funding by the European Union (grant 690462). Renata Libonati was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ, grant 305159/2018-6) and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ, grant E26/202.714/2019). Lucas C.O. Castro was supported by the Programa Institucional de Bolsas de Iniciação Científica – Universidade Federal do Rio de Janeiro (PIBIC-UFRJ).

Author information

Affiliations

Authors

Corresponding author

Correspondence to João L. Geirinhas.

Electronic supplementary material

ESM 1

(DOCX 147 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geirinhas, J.L., Russo, A., Libonati, R. et al. Heat-related mortality at the beginning of the twenty-first century in Rio de Janeiro, Brazil. Int J Biometeorol 64, 1319–1332 (2020). https://doi.org/10.1007/s00484-020-01908-x

Download citation

Keywords

  • Extreme events
  • Rio de Janeiro
  • Extreme heat factor
  • Heat waves
  • Mortality levels