Skip to main content

The role of magnetic fields in neurodegenerative diseases

Abstract

The term neurodegenerative diseases include a long list of diseases affecting the nervous system that are characterized by the degeneration of different neurological structures. Among them, Alzheimer disease (AD), Parkinson disease (PD), and amyotrophic lateral sclerosis (ALS) are the most representative ones. The vast majority of cases are sporadic and results from the interaction of genes and environmental factors in genetically predisposed individuals. Among environmental conditions, electromagnetic field exposure has begun to be assessed as a potential risk factor for neurodegeneration. In this review, we discuss the existing literature regarding electromagnetic fields and neurodegenerative diseases. Epidemiological studies in AD, PD, and ALS have shown discordant results; thus, a clear correlation between electromagnetic exposure and neurodegeneration has not been demonstrated. In addition, we discuss the role of electromagnetic radiation as a potential non-invasive therapeutic strategy for some neurodegenerative diseases, particularly for PD and AD.

This is a preview of subscription content, access via your institution.

References

  • Adair RK (1991) Constraints on biological effects of weak extremely-low-frequency electromagnetic fields. Phys Rev A 43(2):1039

    CAS  Google Scholar 

  • Adair RK (2003) Biophysical limits on athermal effects of RF and microwave radiation. Bioelectromagnetics 24:39–48

    Google Scholar 

  • Aftanas LI, Gevorgyan MM, Zhanaeva SY, Dzemidovich SS, Kulikova KI, al’perina E, Danilenko KV, Idova GV (2018) Therapeutic effects of repetitive transcranial magnetic stimulation (rTMS) on neuroinflammation and neuroplasticity in patients with Parkinson’s disease: a placebo-controlled study. Bull Exp Biol Med 165:195–199

    CAS  Google Scholar 

  • Akbarnejad Z, Esmaeilpour K, Shabani M, Asadi-Shekaari M, Saeedi GM, Ahmadi-Zeidabadi M (2018) Spatial memory recovery in Alzheimer’s rat model by electromagnetic field exposure. Int J Neurosci 128:691–696

    CAS  Google Scholar 

  • Al Chalabi A, Hardiman O (2013) The epidemiology of ALS: a conspiracy of genes, environment and time. Nat Rev Neurol 9:617–628

    Google Scholar 

  • André-Obadia N, Lamblin MD, Sauleau P (2015) French recommendations on electroencephalography. Neurophysiol Clin 45:1–17

    Google Scholar 

  • Anninos PA, Tsagas N, Sandyk R, Derpapas K (1991) Magnetic stimulation in the treatment of partial seizures. Int J Neurosci 60:141–171

    CAS  Google Scholar 

  • Anninos PA, Adamopoulos AV, Kotini A, Tsagas N (2000) Nonlinear analysis of brain activity in magnetic influenced Parkinson patients. Brain Topogr 13:35–144

    Google Scholar 

  • Arendash GW, Sanchez-Ramos J, Mori T, Mamcarz M, Lin X, Runfeldt M, Wang L, Zhang G, Sava V, Tan J, Cao C (2010) Electromagnetic field treatment protects against and reverses cognitive impairment in Alzheimer’s disease mice. J Alzheimers Dis 19:191–210

    Google Scholar 

  • Barker AT, Jalinous R, Freeston IL (1985) Non-invasive magnetic stimulation of human motor cortex. Lancet 1:1106–1107

    CAS  Google Scholar 

  • Barnes FS, Greenebaum B (2015) The effects of weak magnetic fields on radical pairs: weak magnetic field effects on radicals. Bioelectromagnetics 36:45–54

    CAS  Google Scholar 

  • Bateman R (2015) Alzheimer’s disease and other dementias: advances in 2014. Lancet Neurol 14:4–6

    Google Scholar 

  • Benassi B, Filomeni G, Montagna C et al (2016) Extremely low frequency magnetic field (ELF-MF) exposure sensitizes SH-SY5Y cells to the pro-Parkinson’s disease toxin MPP(.). Mol Neurobiol 53:4247–4260

    CAS  Google Scholar 

  • Bharath S, Hsu M, Kaur D, Rajagopalan S, Andersen JK (2002) Glutathione, iron and Parkinson’s disease. Biochem Pharmacol 64:1037–1048

    CAS  Google Scholar 

  • Brouwer M, Koeman T, van den Brandt PA, Kromhout H, Schouten LJ, Peters S, Huss A, Vermeulen R (2015) Occupational exposures and Parkinson’s disease mortality in a prospective Dutch cohort. Occup Environ Med 72:448–455

    Google Scholar 

  • Capone F, Dileone M, Profice P et al (2009) Does exposure to extremely low frequency magnetic fields produce functional changes in human brain? J Neural Transm (Vienna) 116:257–265

    CAS  Google Scholar 

  • Capozzella A, Sacco C, Chighine A, Loreti B, Scala B, Casale T, Sinibaldi F, Tomei G, Giubilati R, Tomei F, Rosati MV (2014) Work related etiology of amyotrophic lateral sclerosis (ALS): a meta-analysis. Ann Ig 26:456–472

    CAS  Google Scholar 

  • Castanedo-Vazquez D, Bosque-Varela P, Sainz-Pelayo A, Riancho J (2019) Infectious agents and amyotrophic lateral sclerosis: another piece of the puzzle of motor neuron degeneration. J Neurol 266:27–36

    CAS  Google Scholar 

  • Chafai DE, Sulimenko V, Havelka D, Kubínová L, Dráber P, Cifra M (2019) Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater 31:1903636

    Google Scholar 

  • Cherry NJ (2002) Schumann resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity. Nat Hazards 26:279–331

    Google Scholar 

  • Chou YH, Hickey PT, Sundman M, Song AW, Chen NK (2015) Effects of repetitive transcranial magnetic stimulation on motor symptoms in Parkinson disease: a systematic review and meta-analysis. JAMA Neurol 72:432–440

    Google Scholar 

  • Cifra M, Fields JZ, Farhadi A (2011) Electromagnetic cellular interactions. Prog Biophys Mol Biol 105:223–246

    CAS  Google Scholar 

  • Conceição R, Melgão M, Silva HG, Nicoll K, Harrison RG, Reis AH (2016) Transport of the smoke plume from Chiado’s fire in Lisbon (Portugal) sensed by atmospheric electric field measurements. Air Qual Atmos Health 9:275–283

    Google Scholar 

  • Consales C, Merla C, Marino C, Benassi B (2012) Electromagnetic fields, oxidative stress, and neurodegeneration. Int J Cell Biol 2012:683897

    Google Scholar 

  • Davanipour Z, Tseng CC, Lee PJ, Sobel E (2007) A case-control study of occupational magnetic field exposure and Alzheimer’s disease: results from the California Alzheimer’s Disease Diagnosis and Treatment Centers. BMC Neurol 7:13

    Google Scholar 

  • Demitrack MA, Thase ME (2009) Clinical significance of transcranial magnetic stimulation (TMS) in the treatment of pharmacoresistant depression: synthesis of recent data. Psychopharmacol Bull 42:5–38

    Google Scholar 

  • Fdez-Arroyabe P, Lecha Estela L, Schimt F (2018) Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol 62:733–740

    Google Scholar 

  • Feychting M, Jonsson F, Pedersen NL, Ahlbom A (2003) Occupational magnetic field exposure and neurodegenerative disease. Epidemiology. 14:413–419

    Google Scholar 

  • Frei P, Poulsen AH, Mezei G et al (2013) Residential distance to high-voltage power lines and risk of neurodegenerative diseases: a Danish population-based case-control study. Am J Epidemiol 177:970–978

    Google Scholar 

  • Gibson SB, Abbott D, Farnham JM, Thai KK, McLean H, Figueroa KP, Bromberg MB, Pulst SM, Cannon-Albright L (2016) Population-based risks for cancer in patients with ALS. Neurology 87:289–294

    Google Scholar 

  • Graves AB, Rosner D, Echeverria D, Yost M, Larson EB (1999) Occupational exposure to electromagnetic fields and Alzheimer disease. Alzheimer Dis Assoc Disord 13:165–170

    CAS  Google Scholar 

  • Gunnarsson LG, Bodin L (2017) Parkinson’s disease and occupational exposures: a systematic literature review and meta-analyses. Scand J Work Environ Health 43:197–209

    Google Scholar 

  • Gunnarsson LG, Bodin L (2019) Occupational exposures and neurodegenerative diseases-a systematic literature review and meta-analyses. Int J Environ Res Public Health:16

  • Håkansson N, Gustavsson P, Johansen C, Floderus B (2003) Neurodegenerative diseases in welders and other workers exposed to high levels of magnetic fields. Epidemiology. 14:420–426

    Google Scholar 

  • Halberg F (1963) Circadian (about twenty-four-hour) rhythms in experimental medicine. Proc R Soc Med 56:253–257

    CAS  Google Scholar 

  • Harrison RG, Nicoll KA, Aplin KL (2017) Evaluating stratiform cloud base charge remotely. Geophys Res Lett 44:6407–6412

    Google Scholar 

  • Hebert LE, Scherr PA, Bienias JL, Bennett DA, Evans DA (2003) Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 60:1119–1122

    Google Scholar 

  • Hei WH, Byun SH, Kim JS et al (2016) Effects of electromagnetic field (PEMF) exposure at different frequency and duration on the peripheral nerve regeneration: in vitro and in vivo study. Int J Neurosci 126:739–748

    CAS  Google Scholar 

  • Hekstra DR, Ian White K, Socolich MA, Henning RW, Šrajer V, Ranganathan R (2016) Electric-field-stimulated protein mechanics. Nature 540:400–405

    CAS  Google Scholar 

  • Hoogendam JM, Ramakers GM, Di Lazzaro V (2010) Physiology of repetitive transcranial magnetic stimulation of the human brain. Brain Stimul 3:95–118

    Google Scholar 

  • Hug K, Röösli M, Rapp R (2006) Magnetic field exposure and neurodegenerative diseases--recent epidemiological studies. Soz Praventivmed 51:210–220

    Google Scholar 

  • Huss A, Spoerri A, Egger M, Kromhout H, Vermeulen R (2015a) Occupational exposure to magnetic fields and electric shocks and risk of ALS: the Swiss National Cohort. Amyotroph Lateral Scler Frontotemporal Degener 16:80–85

    CAS  Google Scholar 

  • Huss A, Koeman T, Kromhout H, Vermeulen R (2015b) Extremely low frequency magnetic field exposure and Parkinson’s disease--a systematic review and meta-analysis of the data. Int J Environ Res Public Health 12:7348–7356

    CAS  Google Scholar 

  • Huss A, Peters S, Vermeulen R (2018) Occupational exposure to extremely low-frequency magnetic fields and the risk of ALS: a systematic review and meta-analysis. Bioelectromagnetics 39:156–163

    Google Scholar 

  • Ilieva S, Cheshmedzhieva D, Dudev T (2019) Electric field influence on the helical structure of peptides: insights from DFT/PCM computations. Phys Chem Chem Phys 21:16198–16206

    CAS  Google Scholar 

  • Jadidi M, Biat SM, Sameni HR, Safari M, Vafaei AA, Ghahari L (2016) Mesenchymal stem cells that located in the electromagnetic fields improves rat model of Parkinson’s disease. Iran J Basic Med Sci 19:741–748

    Google Scholar 

  • Jagust W (2018) Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci 19:687–700

    CAS  Google Scholar 

  • Jiang DP, Li J, Zhang J, Xu SL, Kuang F, Lang HY, Wang YF, An GZ, Li JH, Guo GZ (2013) Electromagnetic pulse exposure induces overexpression of beta amyloid protein in rats. Arch Med Res 44:178–184

    CAS  Google Scholar 

  • Jiang DP, Li J, Zhang J, Xu SL, Kuang F, Lang HY, Wang YF, An GZ, Li J, Guo GZ (2016) Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1. Brain Res 1642:10–19

    CAS  Google Scholar 

  • Johansen C (2000) Exposure to electromagnetic fields and risk of central nervous system disease in utility workers. Epidemiology. 11:539–543

    CAS  Google Scholar 

  • Johansen C, Olsen JH (1998) Mortality from amyotrophic lateral sclerosis, other chronic disorders, and electric shocks among utility workers. Am J Epidemiol 148:362–368

    CAS  Google Scholar 

  • Kasper S, Höflich G (1993) Application of transcranial magnetic stimulation in treatment of drug-resistant major depression—a report of two cases. Hum Psychopharmacol

  • Koeman T, Slottje P, Schouten LJ, Peters S, Huss A, Veldink JH, Kromhout H, van den Brandt PA, Vermeulen R (2017) Occupational exposure and amyotrophic lateral sclerosis in a prospective cohort. Occup Environ Med 74:578–585

    Google Scholar 

  • Kučera O, Cifra M (2013) Cell-to-cell signaling through light: just a ghost of chance? Cell Commun Signal 11:1

    Google Scholar 

  • Lefaucheur JP, André-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    Google Scholar 

  • Lekhraj R, Cynamon DE, DeLuca SE, Taub ES, Pilla AA, Casper D (2014) Pulsed electromagnetic fields potentiate neurite outgrowth in the dopaminergic MN9D cell line. J Neurosci Res 92:761–771

    CAS  Google Scholar 

  • Lerchl A, Nonaka KO, Reiter RJ (1991) Pineal gland “magnetosensitivity” to static magnetic fields is a consequence of induced electric currents (eddy currents). J Pineal Res 10:109–116

    CAS  Google Scholar 

  • Lewczuk B, Redlarski G, Żak A et al (2014) Influence of electric, magnetic, and electromagnetic fields on the circadian system: current stage of knowledge. Biomed Res Int 2014:169459

    Google Scholar 

  • Li CY, Sung FC (2003) Association between occupational exposure to power frequency electromagnetic fields and amyotrophic lateral sclerosis: a review. Am J Ind Med 43:212–220

    Google Scholar 

  • Li Y, Yan X, Liu J, Li L, Hu X, Sun H, Tian J (2014) Pulsed electromagnetic field enhances brain-derived neurotrophic factor expression through L-type voltage-gated calcium channel- and Erk-dependent signaling pathways in neonatal rat dorsal root ganglion neurons. Neurochem Int 75:96–104

    CAS  Google Scholar 

  • Longo FM, Yang T, Hamilton S, Hyde JF, Walker J, Jennes L, Stach R, Sisken BF (1999) Electromagnetic fields influence NGF activity and levels following sciatic nerve transection. J Neurosci Res 55:230–237

    CAS  Google Scholar 

  • Macias MY, Battocletti JH, Sutton CH, Pintar FA, Maiman DJ (2000) Directed and enhanced neurite growth with pulsed magnetic field stimulation. Bioelectromagnetics. 21:272–286

    CAS  Google Scholar 

  • Malling ASB, Morberg BM, Wermuth L, Gredal O, Bech P, Jensen BR (2018) Effect of transcranial pulsed electromagnetic fields (T-PEMF) on functional rate of force development and movement speed in persons with Parkinson’s disease: a randomized clinical trial. PLoS One 13:e0204478

    Google Scholar 

  • Malling ASB, Morberg BM, Wermuth L, Gredal O, Bech P, Jensen BR (2019) The effect of 8 weeks of treatment with transcranial pulsed electromagnetic fields on hand tremor and inter-hand coherence in persons with Parkinson’s disease. J Neuroeng Rehabil 16:19

    Google Scholar 

  • Marracino P, Havelka D, Průša J, Liberti M, Tuszynski J, Ayoub AT, Apollonio F, Cifra M (2019) Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep 9:10477

    Google Scholar 

  • McCartney DL, Stevenson AJ, Walker RM, Gibson J, Morris SW, Campbell A, Murray AD, Whalley HC, Porteous DJ, McIntosh AM, Evans KL, Deary IJ, Marioni RE (2018) Investigating the relationship between DNA methylation age acceleration and risk factors for Alzheimer’s disease. Alzheimers Dement (Amst) 10:429–437

    Google Scholar 

  • Miller BL, Boeve BF (2013) The behavioral neurology of dementia. Cambridge University Press, Cambridge

    Google Scholar 

  • Morberg BM, Malling AS, Jensen BR, Gredal O, Bech P, Wermuth L (2018) Effects of transcranial pulsed electromagnetic field stimulation on quality of life in Parkinson’s disease. Eur J Neurol 25:963–e974

    CAS  Google Scholar 

  • Noonan CW, Reif JS, Yost M, Touchstone J (2002) Occupational exposure to magnetic fields in case-referent studies of neurodegenerative diseases. Scand J Work Environ Health 28:42–48

    Google Scholar 

  • Panagopoulos DJ, Chrousos GP (2019) Shielding methods and products against man-made electromagnetic fields: protection versus risk. Sci Total Environ 667:255–262

    CAS  Google Scholar 

  • Park RM, Schulte PA, Bowman JD, Walker JT, Bondy SC, Yost MG, Touchstone JA, Dosemeci M (2005) Potential occupational risks for neurodegenerative diseases. Am J Ind Med 48:63–77

    CAS  Google Scholar 

  • Pedersen C, Poulsen AH, Rod NH et al (2017) Occupational exposure to extremely low-frequency magnetic fields and risk for central nervous system disease: an update of a Danish cohort study among utility workers. Int Arch Occup Environ Health 90:619–628

    Google Scholar 

  • Petri AK, Schmiedchen K, Stunder D, Dechent D, Kraus T, Bailey WH, Driessen S (2017) Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review. Environ Health 16:41

    Google Scholar 

  • Poulletier de Gannes F, Ruffié G, Taxile M, Ladevèze E, Hurtier A, Haro E, Duleu S, Charlet de Sauvage R, Billaudel B, Geffard M, Veyret B, Lagroye I (2009) Amyotrophic lateral sclerosis (ALS) and extremely-low frequency (ELF) magnetic fields: a study in the SOD-1 transgenic mouse model. Amyotroph Lateral Scler 10:370–373

    Google Scholar 

  • Qiu C, Fratiglioni L, Karp A, Winblad B, Bellander T (2004) Occupational exposure to electromagnetic fields and risk of Alzheimer’s disease. Epidemiology 15:687–694

    Google Scholar 

  • Rahbek UL, Tritsaris K, Dissing S (2005) Interactions of low-frequency, pulsed electromagnetic fields with living tissueb biochemical responses and clinical results. Oral Biosci Med 2:1–12

    Google Scholar 

  • Riancho J, Lozano-Cuesta P, Santurtun A, Sanchez-Juan P, Lopez-Vega JM, Berciano J, Polo JM (2016) Amyotrophic lateral sclerosis in Northern Spain 40 years later: what has changed? Neurodegener Dis 16:337–341

    Google Scholar 

  • Riancho J, Vazquez-Higuera JL, Pozueta A, Lage C, Kazimierczak M, Bravo M, Calero M, Gonzalez A, Rodriguez E, Lleo A, Sanchez-Juan P (2017) MicroRNA profile in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. J Alzheimers Dis 57:483–491

    CAS  Google Scholar 

  • Riancho J, Bosque-Varela P, Perez-Pereda S, Povedano M, de Munain AL, Santurtun A (2018) The increasing importance of environmental conditions in amyotrophic lateral sclerosis. Int J Biometeorol 62:1361–1374

    Google Scholar 

  • Riancho J, Gonzalo I, Ruiz-Soto M, Berciano J (2019) Why do motor neurons degenerate? Actualization in the pathogenesis of amyotrophic lateral sclerosis. Neurologia 34:27–37

    CAS  Google Scholar 

  • Röösli M, Lörtscher M, Egger M, Pfluger D, Schreier N, Lörtscher E, Locher P, Spoerri A, Minder C (2007) Mortality from neurodegenerative disease and exposure to extremely low-frequency magnetic fields: 31 years of observations on Swiss railway employees. Neuroepidemiology. 28:197–206

    Google Scholar 

  • Sandyk R (1995a) Improvement in short-term visual memory by weak electromagnetic fields in Parkinson’s disease. Int J Neurosci 81:67–82

    CAS  Google Scholar 

  • Sandyk R (1995b) Improvement of body image perception in Parkinson’s disease by treatment with weak electromagnetic fields. Int J Neurosci 82:269–283

    CAS  Google Scholar 

  • Sandyk R, Iacono RP (1993) Rapid improvement of visuoperceptive functions by picotesla range magnetic fields in patients with Parkinson’s disease. Int J Neurosci 70:233–254

    CAS  Google Scholar 

  • Sandyk R, Iacono RP (1994) Reversal of micrographia in Parkinson’s disease by application of picotesla range magnetic fields. Int J Neurosci 77:77–84

    CAS  Google Scholar 

  • Sandyk R, Anninos PA, Tsagas N, Derpapas K (1992) Magnetic fields in the treatment of Parkinson’s disease. Int J Neurosci 63:141–150

    CAS  Google Scholar 

  • Santurtun A, Villar A, Delgado-Alvarado M, Riancho J (2016) Trends in motor neuron disease: association with latitude and air lead levels in Spain. Neurol Sci 37:1271–1275

    Google Scholar 

  • Savitz DA, Checkoway H, Loomis DP (1998a) Magnetic field exposure and neurodegenerative disease mortality among electric utility workers. Epidemiology 9:398–404

    CAS  Google Scholar 

  • Savitz DA, Loomis DP, Tse CK (1998b) Electrical occupations and neurodegenerative disease: analysis of U.S. mortality data. Arch Environ Health 53:71–74

    CAS  Google Scholar 

  • Seidler A, Geller P, Nienhaus A, Bernhardt T, Ruppe I, Eggert S, Hietanen M, Kauppinen T, Frolich L (2007) Occupational exposure to low frequency magnetic fields and dementia: a case-control study. Occup Environ Med 64:108–114

    Google Scholar 

  • Selmaoui B, Lambrozo J, Touitou Y (1996) Magnetic fields and pineal function in humans: evaluation of nocturnal acute exposure to extremely low frequency magnetic fields on serum melatonin and urinary 6-sulfatoxymelatonin circadian rhythms. Life Sci 58:1539–1549

    CAS  Google Scholar 

  • Semm P (1992) Pineal function in mammals and birds is altered by earth-strength magnetic fields. In: Electromagnetic fields and circadian rhythmicity. Birkhäuser Boston, Boston, pp 53–62

    Google Scholar 

  • Silva HG, Lopes FM, Pereira S, Nicoll K, Barbosa SM, Conceição R, Neves S, Harrison RG, Collares Pereira M (2016) Saharan dust electrification perceived by a triangle of atmospheric electricity stations in Southern Portugal. J Electrost 84:106–120

    Google Scholar 

  • Singh D (2007) The atmospheric global electric circuit: an overview. Atmos Res 84:91–110

    Google Scholar 

  • Sobel E, Dunn M, Davanipour Z, Qian Z, Chui HC (1996) Elevated risk of Alzheimer’s disease among workers with likely electromagnetic field exposure. Neurology 47:1477–1481

    CAS  Google Scholar 

  • Soderqvist F, Hardell L, Carlberg M, Mild KH (2010) Radiofrequency fields, transthyretin, and Alzheimer’s disease. J Alzheimers Dis 20:599–606

    Google Scholar 

  • Son Y, Jeong YJ, Kwon JH, Choi HD, Pack JK, Kim N, Lee YS, Lee HJ (2016) 1950 MHz radiofrequency electromagnetic fields do not aggravate memory deficits in 5xFAD mice. Bioelectromagnetics 37:391–399

    CAS  Google Scholar 

  • Sorahan T, Kheifets L (2007) Mortality from Alzheimer’s, motor neuron and Parkinson’s disease in relation to magnetic field exposure: findings from the study of UK electricity generation and transmission workers, 1973-2004. Occup Environ Med 64:820–826

    CAS  Google Scholar 

  • Sorahan T, Mohammed N (2014) Neurodegenerative disease and magnetic field exposure in UK electricity supply workers. Occup Med (Lond) 64:454–460

    CAS  Google Scholar 

  • Tsong TY, Astumian RD (1986) 863—absorption and conversion of electric field energy by membrane bound ATPases. Bioelectrochem Bioenerg 15:457–476

    CAS  Google Scholar 

  • Turner MR, Goldacre R, Ramagopalan S, Talbot K, Goldacre MJ (2013) Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 81:1222–1225

    CAS  Google Scholar 

  • Umarao P, Bose S, Bhattacharyya S, Kumar A, Jain S (2016) Neuroprotective potential of superparamagnetic iron oxide nanoparticles along with exposure to electromagnetic field in 6-OHDA rat model of Parkinson’s disease. J Nanosci Nanotechnol 16:261–269

    CAS  Google Scholar 

  • Usselman RJ, Chavarriaga C, Castello PR, Procopio M, Ritz T, Dratz EA, Singel DJ, Martino CF (2016) The quantum biology of reactive oxygen species partitioning impacts cellular bioenergetics. Sci Rep 6:38543

    CAS  Google Scholar 

  • Van der Mark M, Vermeulen R, Nijssen PC et al (2015) Extremely low-frequency magnetic field exposure, electrical shocks and risk of Parkinson’s disease. Int Arch Occup Environ Health 88:227–234

    Google Scholar 

  • Vergara X, Kheifets L, Greenland S, Oksuzyan S, Cho YS, Mezei G (2013) Occupational exposure to extremely low-frequency magnetic fields and neurodegenerative disease: a meta-analysis. J Occup Environ Med 55:135–146

    CAS  Google Scholar 

  • Wang MD, Gomes J, Cashman NR, Little J, Krewski D (2014) A meta-analysis of observational studies of the association between chronic occupational exposure to lead and amyotrophic lateral sclerosis. J Occup Environ Med 56:1235–1242

    CAS  Google Scholar 

  • Wang CX, Hilburn IA, Wu D-A, Mizuhara Y, Couste CP, Abrahams JNH, Bernstein SE, Matani A, Shimojo S, Kirschvink JL (2019) Transduction of the geomagnetic field as evidenced from alpha-band activity in the human brain. eneuro, 2019. ENEURO:0483–0418

  • Wechsler LS, Checkoway H, Franklin GM, Costa LG (1991) A pilot study of occupational and environmental risk factors for Parkinson’s disease. Neurotoxicology. 12:387–392

    CAS  Google Scholar 

  • Wever R (1973) Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeorol 17:227–223

    CAS  Google Scholar 

  • Wever R (1974) ELF-effects on human circadian rhythms. In: ELF and VLF electromagnetic field effects. Springer US, Boston, pp 101–144

    Google Scholar 

  • Winblad B, Amouyel P, Andrieu S, Ballard C, Brayne C, Brodaty H, Cedazo-Minguez A, Dubois B, Edvardsson D, Feldman H, Fratiglioni L, Frisoni GB, Gauthier S, Georges J, Graff C, Iqbal K, Jessen F, Johansson G, Jonsson L, Kivipelto M, Knapp M, Mangialasche F, Melis R, Nordberg A, Rikkert MO, Qiu C, Sakmar TP, Scheltens P, Schneider LS, Sperling R, Tjernberg LO, Waldemar G, Wimo A, Zetterberg H (2016) Defeating Alzheimer’s disease and other dementias: a priority for European science and society. Lancet Neurol 15:455–532

    Google Scholar 

  • Yang C, Guo Z, Peng H et al (2018) Repetitive transcranial magnetic stimulation therapy for motor recovery in Parkinson’s disease: a meta-analysis. Brain Behav 8:e01132

    Google Scholar 

  • Zanjani A, Zakzanis KK, Daskalakis ZJ, Chen R (2015) Repetitive transcranial magnetic stimulation of the primary motor cortex in the treatment of motor signs in Parkinson’s disease: a quantitative review of the literature. Mov Disord 30:750–758

    Google Scholar 

  • Zarranz JJ (2008) Neurología, 4ª edn. Elsevier, Madrid

    Google Scholar 

  • Zhang Y, Liu X, Zhang J, Li N (2015) Short-term effects of extremely low frequency electromagnetic fields exposure on Alzheimer’s disease in rats. Int J Radiat Biol 91:28–34

    CAS  Google Scholar 

  • Zhang J, Sumich A, Wang GY (2017) Acute effects of radiofrequency electromagnetic field emitted by mobile phone on brain function. Bioelectromagnetics 38:329–338

    Google Scholar 

  • Zhou H, Chen G, Chen C, Yu Y, Xu Z (2012) Association between extremely low-frequency electromagnetic fields occupations and amyotrophic lateral sclerosis: a meta-analysis. PLoS One 7:e48354

    CAS  Google Scholar 

  • Ziemann U, Paulus W, Nitsche MA, Pascual-Leone A, Byblow WD, Berardelli A, Siebner HR, Classen J, Cohen LG, Rothwell JC (2008) Consensus: motor cortex plasticity protocols. Brain Stimul 1:164–182

    Google Scholar 

  • Zufiria M, Gil-Bea FJ, Fernandez-Torron R, Poza JJ, Munoz-Blanco JL, Rojas-Garcia R, Riancho J, de Munain AL (2016) ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog Neurobiol 142:104–129

    CAS  Google Scholar 

Download references

Acknowledgments

This article is based upon work from COST Action Electronet (CA14211), supported by COST (European Cooperation in Science and Technology). M.C. also acknowledges project no. 18-23597S from the Czech Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Riancho.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Riancho, J., Sanchez de la Torre, J., Paz-Fajardo, L. et al. The role of magnetic fields in neurodegenerative diseases. Int J Biometeorol 65, 107–117 (2021). https://doi.org/10.1007/s00484-020-01896-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01896-y

Keywords

  • Alzheimer’s disease
  • Amyotrophic lateral sclerosis
  • Electromagnetic fields
  • Parkinson’s disease
  • Neurodegenerative diseases