Skip to main content

Carbon and water fluxes in an alpine steppe ecosystem in the Nam Co area of the Tibetan Plateau during two years with contrasting amounts of precipitation

Abstract

Carbon and water fluxes and their interactions with climate drivers in alpine grasslands on the Tibetan Plateau are poorly understood. This lack of understanding is particularly evident for the alpine steppe in the Nam Co area of the hinterland on the Tibetan Plateau, which is vulnerable and exceedingly sensitive to climate change. In this study, eddy covariance (EC) measurements of carbon dioxide (CO2) and water fluxes were carried out in this region during the growing season of 2008 and 2009, with contrasting hydrological conditions. The results show that (1) the monthly patterns of carbon and water fluxes differed markedly in the two years; the total respiration (Re), net ecosystem carbon dioxide exchange (NEE) and gross primary productivity (GPP) were 181.6 ± 11.5, − 62.6 ± 10.8, and 244.2 ± 9.6 and 144.6 ± 12.0, − 32.4 ± 11.7, and 176.9 ± 12.3 g C m−2 during the growing seasons in 2008 and 2009; meanwhile, the cumulative evapotranspiration (ET) values were 503.1 ± 13.5 and 387.3 ± 8.2 mm during the growing season in 2008 and 2009, respectively. The cumulative carbon fluxes and ET were both higher in the wetter 2008 than in the drier 2009, consistent with the precipitation results. (2) Soil water content (SWC) played a paramount role in the variations in carbon fluxes (NEE, GPP, and Re) and ET during the vegetative period over the two years. As a result, the alpine steppe ecosystem was water-limited. (3) Water stress caused by the low surface soil water content significantly depressed photosynthesis and ET during the daytime in July and August. (4) Water use efficiency (WUE) had a negative relationship with SWC during the growing season in these two years, and the WUE increased during drought.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Aires LMI, Pio CA, Pereira JS (2008) Carbon dioxide exchange above a Mediterranean C3/C4 grassland during two climatologically contrasting years. Glob Chang Biol 14(3):539–555

    Google Scholar 

  • Amiro BD, Barr AG, Black TA, Iwashita H, Kljun N, McCaughey JH, Morgenstern K, Murayama S, Nesic Z, Orchansky AL, Saigusa N (2006) Carbon, energy and water fluxes at mature and disturbed forest sites Saskatchewan. Canada Agricultural and Forest Meteorology 136:237–251

    Google Scholar 

  • Bajgain R, Xiao X, Basara J, Wagle P, Zhou Y, Mahan H, Gowda P, McCarthy HR, Northup NB, Steiner JJ (2018) Carbon dioxide and water vapor fluxes in winter wheat and tallgrass prairie in Central Oklahoma. Sci Total Environ 644:1511–1524

    CAS  Google Scholar 

  • Ball MC, Woodrow IE, Berry JA (1987) A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggins J (ed) Progress in photosynthesis research. Martinus Nijhoff Publishers, Dordrecht, pp 221–224

    Google Scholar 

  • Biederman JA, Scott RL, Goulden ML, Vargas R, Litvak ME, Kolb TE, Yepez EA, Oechel WC, Blanken PD, Bell TW, Garatuza-Payan J, Maurer GE, Dore S, Burns SP (2016) Terrestrial carbon balance in a drier world: the effects of water availability in southwestern North America. Glob Chang Biol 22(5):1867–1879

    Google Scholar 

  • Blok D, Heijmans MMPD, Schaepman-Strub G, van Ruijven J, Parmentier FJW, Maximov TC, Berendse F (2011) The cooling capacity of mosses: controls on water and energy fluxes in a Siberian tundra site. Ecosystems. 14(7):1055–1065

    Google Scholar 

  • Bonal D, Bosc A, Ponton S, Goret JY, Burban B, Gross P, Bonnefond JM, Elbers J, Longdoz B, Epron D, Guehl JM, Granier A (2008) Impact of severe dry season on net ecosystem exchange in the Neotropical rainforest of French Guiana. Glob Chang Biol 14(8):1917–1933

    Google Scholar 

  • Chu X, Han G, Xing Q, Xia J, Sun B, Yu J, Li D (2018) Dual effect of precipitation redistribution on net ecosystem CO 2 exchange of a coastal wetland in the Yellow River Delta. Agric For Meteorol 249:286–296

    Google Scholar 

  • Coners H, Babel W, Willinghöfer S, Biermann T, Köhler L, Seeber E, Foken T, Ma Y, Yang Y, Miehe G, Leuschner C (2016) Evapotranspiration and water balance of high-elevation grassland on the Tibetan Plateau. J Hydrol 533:557–566

    Google Scholar 

  • Denton EM, Dietrich JD, Smith MD, Knapp AK (2017) Drought timing differentially affects above- and belowground productivity in a mesic grassland. Plant Ecol 218:317–328

    Google Scholar 

  • Ding J, Chen L, Ji C, Hugelius G, Li Y, Liu L, Qin S, Zhang B, Yang G, Li F, Fang K, Chen Y, Peng Y, Zhao X, He H, Smith P, Fang J, Yang Y (2017) Decadal soil carbon accumulation across Tibetan permafrost regions. Nature Geoscience 10(6):420–424

    CAS  Google Scholar 

  • Dragoni D, Schmid H, Grimmond C, Loescher H (2007) Uncertainty of annual net ecosystem productivity estimated using eddy covariance flux measurements. J Geophys Res-Atmos 112:D17102. https://doi.org/10.1029/2006JD008149

    Article  Google Scholar 

  • Du Q, Liu H (2013) Seven years of carbon dioxide exchange over a degraded grassland and a cropland with maize ecosystems in a semiarid area of China. Agriculture. Ecosystems and Environment 173(2013):1–12

    Google Scholar 

  • Fang Q, Wang G, Xue B, Liu T, Kiem A (2018) How and to what extent does precipitation on multi-temporal scales and soil moisture at different depths determine carbon flux responses in a water-limited grassland ecosystem? Sci Total Environ 635:1255–1266

    CAS  Google Scholar 

  • Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78(1–2):83–105

    Google Scholar 

  • Fu Y, Zheng Z, Yu G, Hu Z, Sun X, Shi P, Wang Y, Zhao X (2009) Environmental influences on carbon dioxide fluxes over three grassland ecosystems in China. Biogeosciences 6(12):2879–2893

    CAS  Google Scholar 

  • Ganjurjav H, Gao Q, Schwartz M, Zhu W, Liang Y, Li Y, Wan Y, Cao X, Williamson M, Jiangcun W, Guo H, Lin E (2016) Complex responses of spring vegetation growth to climate in a moisture-limited alpine meadow. Sci Rep 6:23356

    CAS  Google Scholar 

  • Gao Y, Li X, Liu L, Jia R, Yang H, Li G, Wei Y (2012) Seasonal variation of carbon exchange from a revegetation area in a Chinese desert. Agric For Meteorol 156:134–142

    Google Scholar 

  • García AG, Di Bella CM, Houspanossian J, Magliano PN, Jobbágy EG, Posse G, Fernández RJ, Nosetto MD (2017) Patterns and controls of carbon dioxide and water vapor fluxes in a dry forest of Central Argentina. Agric For Meteorol 247:520–532

    Google Scholar 

  • Grace JB, Schoolmaster DR, Guntenspergen GR, Little AM, Mitchell BR, Miller KM, Schweiger EW (2012) Guidelines for a graph-theoretic implementation of structural equation modeling. Ecosphere 3(8):1–44

    Google Scholar 

  • Grunzweig JM, Lin T, Rotenberg E, Schwartz A, Yakir D (2003) Carbon sequestration in arid-land forest. Glob Chang Biol 9(5):791–799

    Google Scholar 

  • Gu D, Otieno D, Huang Y, Wang Q (2017) Higher assimilation than respiration sensitivity to drought for a desert ecosystem in Central Asia. Sci Total Environ 609:1200–1207

    CAS  Google Scholar 

  • Guo Q, Hu Z, Li S, Yu G, Sun X, Zhang L, Mu S, Zhu X, Wang Y, Li Y, Zhao W (2015) Contrasting responses of gross primary productivity to precipitation events in a water-limited and a temperature-limited grassland ecosystem. Agri For Meteorol 204:169–177

  • Hao Y, Zhang H, Biederman JA, Li L, Cui X, Xue K, Du J, Wang Y (2018) Seasonal timing regulates extreme drought impacts on CO2 and H2O exchanges over semiarid steppes in Inner Mongolia, China. Agric Ecosyst Environ 266:153–166

    Google Scholar 

  • Harris RB (2010) Rangeland degradation on the Qinghai-Tibetan plateau: a review of the evidence of its magnitude and causes. J Arid Environ 74(1):1–12

    CAS  Google Scholar 

  • Hollinger D, Richardson A (2005) Uncertainty in eddy covariance measurements and its application to physiological models. Tree Physiol 25:873–885

    CAS  Google Scholar 

  • Hu Z, Yu G, Fu Y, Sun X, Li Y, Shi P, Wang Y, Zheng Z (2008) Effects of vegetation control on ecosystem water use efficiency within and among four grassland ecosystems in China. Glob Chang Biol 14(7):1609–1619

    Google Scholar 

  • Hunt J, Kelliher F, Mcseveny T, Byers J (2002) Evaporation and carbon dioxide exchange between the atmosphere and a tussock grassland during a summer drought. Agric For Meteorol 111(1):65–82

    Google Scholar 

  • Jia X, Zha T, Wu B, Zhang Y, Gong J, Qin S, Chen G, Qian D, Kellomäki S, Peltola H (2014) Biophysical controls on net ecosystem CO2 exchange over a semiarid shrubland in northwest China. Biogeosciences. 11:4679–4693

    CAS  Google Scholar 

  • Jia X, Zha T, Gong J, Wang B, Zhang Y, Wu B, Qin S, Peltola H (2016) Carbon and water exchange over a temperate semi-arid shrubland during three years of contrasting precipitation and soil moisture patterns. Agric For Meteorol 228-229:120–129

    Google Scholar 

  • Jongen M, Pereira JS, Aires LMI, Pio CA (2011) The effects of drought and timing of precipitation on the inter-annual variation in ecosystem-atmosphere exchange in a Mediterranean grassland. Agric For Meteorol 151(5):595–606

    Google Scholar 

  • Ju W, Wang S, Yu G, Zhou Y, Wang H (2010) Modeling the impact of drought on canopy carbon and water fluxes for a subtropical evergreen coniferous plantation in southern China through parameter optimization using an ensemble Kalman filter. Biogeosciences. 7(3):845–857

    CAS  Google Scholar 

  • Jung M, Reichstein M, Ciais P, Seneviratne SI, Sheffield J, Goulden ML, Bonan G, Cescatti A, Chen J, de Jeu R, Dolman AJ, Eugster W, Gerten D, Gianelle D, Gobron N, Heinke J, Kimball J, Law BE, Montagnani L, Mu Q, Mueller B, Oleson K, Papale D, Richardson AD, Roupsard O, Running S, Tomelleri E, Viovy N, Weber U, Williams C, Wood E, Zaehle S, Zhang K (2010) Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 467(7318):951–954

    CAS  Google Scholar 

  • Knauer J, Werner C, Zaehle S (2015) Evaluating stomatal models and their atmospheric drought response in a land surface scheme: a multibiome analysis. Journal of Geophysical Research Biogeosciences 120(10):1894–1911

    Google Scholar 

  • Kwon H, Pendall E, Ewers BE, Cleary M, Naithani K (2008) Spring drought regulates summer net ecosystem CO2 exchange in a sagebrush-steppe ecosystem. Agric For Meteorol 148(3):381–391

    Google Scholar 

  • Li H, Zhang F, Li Y, Wang J, Zhang L, Zhao L, Cao G, Zhao X, Du M (2016) Seasonal and inter-annual variations in CO 2 fluxes over 10 years in an alpine shrubland on the Qinghai-Tibetan Plateau. China Agricultural and Forest Meteorology 228-229:95–103

    Google Scholar 

  • Li H, Zhu J, Zhang F, He H, Yang Y, Li Y, Cao G, Zhou H (2019) Growth stage-dependant variability in water vapor and CO2 exchanges over a humid alpine shrubland on the northeastern Qinghai-Tibetan Plateau. Agric For Meteorol 268:55–62

    Google Scholar 

  • Liu Y, Zhuang Q, Chen M, Pan Z, Tchebakova N, Sokolov A, Kicklighter D, Melillo J, Sirin A, Zhou G, He Y, Chen J, Bowling L, Miralles D, Parfenova E (2013) Response of evapotranspiration and water availability to changing climate and land cover on the Mongolian Plateau during the 21st century. Glob Planet Chang 108:85–99

    Google Scholar 

  • Liu Y, Zhuang Q, Pan Z, Miralles D, Tchebakova N, Kicklighter D, Chen J, Sirin A, He Y, Zhou G, Melillo J (2014) Response of evapotranspiration and water availability to the changing climate in Northern Eurasia. Climate Change 126(3–4):413–427

    Google Scholar 

  • Liu S, Zamanian K, Schleuss PM, Zarebanadkouki M, Kuzyakov Y (2018) Degradation of Tibetan grasslands: consequences for carbon and nutrient cycles. Agric Ecosyst Environ 252:93–104

    CAS  Google Scholar 

  • Lu X, Kang S, Zhu L, Zhang Y, Han W (2009) Phenology characters of dominant plants in the Nam Co basin and its response to climate, Tibet. J Mt Sci 27(6):648–654

    Google Scholar 

  • Luan J, Song H, Xiang C, Zhu D, Suolang D (2016) Soil moisture, species composition interact to regulate CO 2 and CH 4 fluxes in dry meadows on the Tibetan Plateau. Ecol Eng 91:101–112

    Google Scholar 

  • Marchesini L, Papale D, Reichstein M, Vuichard N, Tchebakova N, Valentini R (2007) Carbon balance assessment of a natural steppe of southern Siberia by multiple constraint approach. Biogeosciences 4(4):581–595

    CAS  Google Scholar 

  • Mauder M, Thomas F (2011) Doucumnet and instruction manual of the Eddy-covariance software package TK3. University of Bayreuth, Arbeitsergebnisse Mikrometeorologie

    Google Scholar 

  • McFadden JP, Eugster W, Chapin FS (2003) A regional study of the controls on water vapor and CO2 exchange in arctic tundra. Ecology 84:2762–2776

    Google Scholar 

  • Medlyn BE, De Kauwe MG, Lin YS, Knauer J, Duursma RA, Williams CA, Arneth A, Clement R, Isaac P, Limousin JM, Linderson ML, Meir P, Martin-StPaul N, Wingate L (2017) How do leaf and ecosystem measures of water-use efficiency compare? New Phytol 216:758–770

    CAS  Google Scholar 

  • Meyers TP (2001) A comparison of summertime water and CO2 fluxes over rangeland for well watered and drought conditions. Agric For Meteorol 106:205–214

    Google Scholar 

  • Moore C (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol. 37(1–2):17–35

    Google Scholar 

  • Qiu J (2008) The third pole. Nature 454(7203):393–396

    CAS  Google Scholar 

  • Rajan N, Maas SJ, Cui S (2015) Extreme drought effects on summer evapotranspiration and energy balance of a grassland in the Southern Great Plains. Ecohydrology 8(7):1194–1204

    Google Scholar 

  • Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Miglietta F, Peressotti A, Pecchiari M, Tirone G, Valentini R (2002) Severe drought effects on ecosystem CO2 and H2O fluxes at three Mediterranean evergreen sites: revision of current hypotheses? Glob Chang Biol 8:999–1017

    Google Scholar 

  • Rigden AJ, Salvucci GD (2017) Stomatal response to humidity and CO2 implicated in recent decline in US evaporation. Glob Chang Biol 23(3):1140–1151

    Google Scholar 

  • Sala OE, Gherardi LA, Reichmann L, Jobbágy E, Peters D (2012) Legacies of precipitation fluctuations on primary production: theory and data synthesis. Philosophical Transactions of the Royal Society- Biological sciences 367:3135–3144

    Google Scholar 

  • Scott RL, Biederman JA, Hamerlynck EP, Barron-Gafford GA (2015) The carbon balance pivot point of southwestern U.S. semiarid ecosystems: insights from the 21st century drought. Journal of Geophysical Research: Biogeosciences 120(12):2612–2624

    CAS  Google Scholar 

  • Strack M, Price JS (2009) Moisture controls on carbon dioxide dynamics of peat-Sphagnum monoliths: results from an extreme drought field experiment. Ecohydrology 2(4):454–461

    CAS  Google Scholar 

  • Sun X, Wen X, Yu G, Liu Y, Liu Q (2006) Seasonal drought effects on carbon sequestration of a mid-subtropical planted forest of southeastern China. Sci China Ser D Earth Sci 49(S2):110–118

    CAS  Google Scholar 

  • Sun G, Alstad K, Chen J, Chen S, Ford CR, Lin G, Liu C, Lu N, McNulty SG, Miao H, Noormets A, Vose JM, Wilske B, Zeppel M, Zhang Y, Zhang Z (2011) A general predictive model for estimating monthly ecosystem evapotranspiration. Ecohydrology 4(2):245–255

    Google Scholar 

  • Sun Q, Meyer WS, Marschner P (2018) Direct and carry-over effects of summer rainfall on ecosystem carbon uptake and water use efficiency in a semi-arid woodland. Agric For Meteorol 263:15–24

    Google Scholar 

  • Sun S, Che T, Li H, Wang T, Ma C, Liu B, Wu Y, Song Z (2019) Water and carbon dioxide exchange of an alpine meadow ecosystem in the northeastern Tibetan Plateau is energy-limited. Agric For Meteorol 275:283–295

    Google Scholar 

  • Tchebakova N, Vygodskaya N, Arneth A, Marchesini L, Kurbatova Y, Parfenova E, Valentini R, Verkhovets S, Vaganov E, Schulze E (2015) Energy and mass exchange and the productivity of main Siberian ecosystems (from eddy covariance measurements). 2. Carbon exchange and productivity. Biol Bull 42(6):579–588

  • Tian D, Niu S, Pan Q, Ren T, Chen S, Bai Y, Han X, Whitehead D (2016) Nonlinear responses of ecosystem carbon fluxes and water-use efficiency to nitrogen addition in Inner Mongolia grassland. Funct Ecol 30(3):490–499

    Google Scholar 

  • Ueyama M, Iwata H, Harazono Y (2013) Autumn warming reduces the CO2 sink of a black spruce forest in interior Alaska based on a nine-year eddy covariance measurement. Global Change Biology-Bioenergy 20:1161–1173

    Google Scholar 

  • van der Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubkova M, Friedl MA, Jung M, van den Hurk BJJM, de Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, van der Werf GR, Wang G (2011) Drought and ecosystem carbon cycling. Agric For Meteorol 151(7):765–773

    Google Scholar 

  • Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14(3):512–526

    Google Scholar 

  • Vourlitis GL, Oechel WC (1999) Eddy covariance measurements of CO2 and energy fluxes of an Alaskan tussock tundra ecosystem. Ecology 80(2):686–701

    Google Scholar 

  • Wagle P, Xiao X, Scott RL, Kolb TE, Cook DR, Brunsell N, Baldocchi DD, Basara J, Matamala R, Zhou Y, Bajgain R (2015) Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States. Agric For Meteorol 214-215:293–305

    Google Scholar 

  • Wang G, Qian J, Cheng G, Lai Y (2002) Soil organic carbon pool of grassland soils on the Qinghai-Tibetan Plateau and its global implication. Sci Total Environ 291:207–217

    CAS  Google Scholar 

  • Wang B, Bao Q, Hoskins B, Wu GX, Liu YM (2008) Tibetan plateau warming and precipitation changes in East Asia. Geophys Res Lett 35(14):1–5

    Google Scholar 

  • Wang Y, Zhou L, Ping X, Jia Q, Li R (2018) Ten-year variability and environmental controls of ecosystem water use efficiency in a rainfed maize cropland in Northeast China. Field Crop Res 226:48–55

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106(447):85–100

    Google Scholar 

  • Wever LA, Flanagan LB, Carlson PJ (2002) Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a northern temperate grassland. Agric For Meteorol 112:31–49

    Google Scholar 

  • Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Google Scholar 

  • Wilson KB, Hanson PJ, Baldocchi DD (2000) Factors controlling evaporation and energy partitioning beneath a deciduous forest over an annual cycle. Agric For Meteorol 102:83–103

    Google Scholar 

  • Yang F, Zhou G, Hunt J, Zhang F (2011) Biophysical regulation of net ecosystem carbon dioxide exchange over a temperate desert steppe in Inner Mongolia, China. Agric Ecosyst Environ 142:318–328

    Google Scholar 

  • Yu G, Song X, Wang Q, Liu Y, Guan D, Yan J, Sun X, Zhang L, Wen X (2008) Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables. New Phytol 177(4):927–937

    CAS  Google Scholar 

  • Yu Z, Wu G, Laura K, Li F, Yan N, Qu D, Liu X (2019) Seasonal variation of chemical weathering and its controlling factors in two alpine catchments, Nam Co basin, central Tibetan Plateau. J Hydrol 576:381–395

    CAS  Google Scholar 

  • Zhang Y, Xiao X, Zhou S, Ciais P, McCarthy H, Luo Y (2016) Canopy and physiological controls of GPP during drought and heat wave. Geophys Res Lett 43(7):3325–3333

    Google Scholar 

  • Zhang F, Li H, Wang W, Li Y, Lin L, Guo X, Du Y, Li Q, Yang Y, Cao G, Li Y (2018a) Net radiation rather than surface moisture limits evapotranspiration over a humid alpine meadow on the northeastern Qinghai-Tibetan Plateau. Ecohydrology 11(2):1–11

    Google Scholar 

  • Zhang T, Zhang Y, Xu M, Zhu J, Chen N, Jiang Y, Huang K, Zu J, Liu Y, Yu G (2018b) Water availability is more important than temperature in driving the carbon fluxes of an alpine meadow on the Tibetan Plateau. Agric For Meteorol 256-257:22–31

    Google Scholar 

  • Zheng C, Tang XG, Gu Q, Wang TX, Wei J, Song LS, Ma MG (2018) Climatic anomaly and its impact on vegetation phenology, carbon sequestration and water-use efficiency at a humid temperate forest. J Hydrol 565:150–159

    CAS  Google Scholar 

  • Zhu Z, Ma Y, Li M, Hu Z, Xu C, Zhang L, Han C, Wang Y, Ichiro T (2015) Carbon dioxide exchange between an alpine steppe ecosystem and the atmosphere on the Nam Co area of the Tibetan Plateau. Agric For Meteorol 203:169–179

    Google Scholar 

Download references

Funding

This research has been funded by the Strategic Priority Research Program of Chinese Academy of Sciences (XDA20060101), the National Natural Science Foundation of China (91837208, 91637312), the Second Tibetan Plateau Scientific Expedition and Research Program (STEP, 2019QZKK0103), the Chinese Academy of Sciences (QYZDJ-SSW-DQC019), the ESA-MOST Dragon 4 project CLIMATE-TPE (Dragon 4 id. 32070), and the Doctoral Research Fund of Shandong Jianzhu University (X18075Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaoming Ma.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary figures and tables related to this article can be found in the supplementary material file.

ESM 1

(DOCX 390 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhu, Z., Ma, Y. et al. Carbon and water fluxes in an alpine steppe ecosystem in the Nam Co area of the Tibetan Plateau during two years with contrasting amounts of precipitation. Int J Biometeorol 64, 1183–1196 (2020). https://doi.org/10.1007/s00484-020-01892-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01892-2

Keywords

  • Carbon flux
  • Water flux
  • Alpine steppe ecosystem
  • Tibetan Plateau
  • Precipitation