Skip to main content

Advertisement

Log in

Infrared thermography for evaluation of the environmental thermal comfort for livestock

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The objective of this study was to assess the use of infrared thermography as a microclimate-evaluating tool and an estimate of the thermal comfort provided by four types of tree to cattle under grazing conditions in the central region of Brazil. The experiment was conducted at the Embrapa Beef Cattle Company, in Campo Grande, MS, Brazil, from June to August 2015. Evaluations were carried out over four consecutive days, at 1-hour intervals, from 8:00 a.m. to 4:00 p.m. (local time; GMT − 4:00). Infrared thermography images of tree crowns and soil surface underneath them from the shadow projection of four tree species native to the Brazilian cerrado (savannah-like) biome were obtained. The microclimate was assessed by estimation of thermal indices: temperature and humidity index, black globe, and radiation thermal load. The previous was calculated based on records of air temperature, dew point temperature, black globe temperature, air relative humidity, wind speed, and solar radiation. The geometrical settings of the trees were assessed for each tree component. Five thematic groups were formed based on multiple factor analysis that summarizes three synthetic analytical dimensions to explain the total variance among the studied elements and the existing correlations between groups. Positive linear correlations were found between thermography and the temperature measurements, thermal comfort indices, and radiation, suggesting that infrared thermography can be used as a tool for estimating and monitoring the microclimate and thermal comfort, presenting a potential use of measurement in agroforestry systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abreu LV, Labaki LC (2010) Conforto térmico propiciado por algumas espécies: avaliação do raio de influência através de diferentes índices de conforto. Ambient Constr (Online) 10:103–117

    Article  Google Scholar 

  • Albatici R, Tonelli AM (2010) Infrared thermovision technique for the assessment of thermal transmittance value of opaque building elements on site. Energ Buildings 42:2177–2183

    Article  Google Scholar 

  • Alves FV (2012) O componente animal em sistemas de produção em integração. In: Bungenstab, DJ , (ed). Sistemas de integração lavoura-pecuária-floresta: a produção sustentável, Embrapa Gado de Corte, Campo Grande, MS, Brasil 53-59

  • Andersen HML, Jørgensen E, Dybkjær L, Jørgensen B (2008) The ear skin temperature as an indicator of the thermal comfort of pigs. Appl Anim Behav Sci 113:43–56

    Article  Google Scholar 

  • Balaras CA, Argiriou AA (2002) Infrared thermography for building diagnostics. Energ Buildings 34(2):171–183

    Article  Google Scholar 

  • Barreira E, De Freitas VP (2007) Evaluation of building materials using infrared thermography. Constr Build Mater 21:218–224

    Article  Google Scholar 

  • Buffington DE, Collazo Arocho A, Canton GH, Pitt D (1981) Black globe humidity index (BGHI) as a comfort equation for dairy cows. Trans Am Soc Agric Eng 24(3):711–714

    Article  Google Scholar 

  • Catena A, Catena G (2008) Overview of thermal imaging for tree assessment. Arboric J 30:259–270

    Article  Google Scholar 

  • Cattelam J, Vale MM (2013) Estresse térmico em bovinos. Rev Port Ciênc Vet 108:96–102

    Google Scholar 

  • Clark MR, Mccann DM, Forde MC (2003) Application of infrared thermography to the non-destructive testing of concrete and masonry bridges. NDT & E Int 36:265–275

  • Collier RJ, Beede DK, Thatcher WW, Israel LA, Wilcox CJ (1982) Influence of environment and its modification on dairy animal health and production. J Dairy Sci 65:2213–2227

    Article  CAS  Google Scholar 

  • Costa E, Silva E, Katayama K, Macedo G, Rueda P, Abreu U, Zúccari C (2010) Efeito do manejo e de variáveis bioclimáticas sobre a taxa de gestação em vacas receptoras de embriões. Ciênc Anim Bras 11(2):280–291

    Google Scholar 

  • Da Costa PA, Saraiva EP, Saraiva CAS, Fonseca VDFC, Almeida MEV, Dos Santos SGGG, Neto PJR (2015) Características anatomofisiológicas de adaptação de bovinos leiteiros ao ambiente tropical. Agrotec 36(1):280–293

  • De Moura DJ, Maia APDA, Vercellino RDA, Medeiros BB, Sarubbi J, Griska PR (2011) Uso da termografia infravermelha na análise da termorregulação de cavalo em treinamento. Eng Agric 31:23–32

  • Escofier B, Pagès J (2008) Analyses factorielles simples et multiples: objectifs, méthodes et interprétation. Dunod

  • Esmay ML (1979) Principles of animal environment.Avi Publishing, Porto Oeste

  • Fokaides PA, Jurelionis A, Gagyte L, Kalogirou SA (2016) Mock target IR thermography for indoor air temperature measurement. Appl Energy 164:676–685

    Article  Google Scholar 

  • Incropera FP, Dewitt DP (2003) Fundamentos de troca de calor e de massa. Editora, Rio de Janeiro, Brasil

    Google Scholar 

  • Karvatte Junior N, Klosowski ES, de Almeida RG, Mesquita EE, de Oliveira CC, Alves FV (2016) Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Int J Biometeorol 60:1–9

    Article  Google Scholar 

  • Lebart L, Piron M, Morineau A (2000) Statistique exploratoire multidimensionnelle. Dunod, Paris

    Google Scholar 

  • Ocaña SM, Guerrero IC, Requena IG (2004) Thermographic survey of two rural buildings in Spain. Energ Buildings 36:515–523

    Article  Google Scholar 

  • de Oliveira CC, Alves FV, de Almeida RG, Gamarra ÉL, Villela SDJ, de Almedia Martins PGM (2017) Thermal comfort indices assessed in integrated production systems in the Brazilian savannah. Agrofor Syst 92(6):1659–1672

    Article  Google Scholar 

  • Paim TP, Borges BO, Lima PMT, Dallago BSL, Louvandini H, McManus C (2012) Relation between thermographic temperatures of lambs and thermal comfort indeces. Int J Appl Anim Sci 1(4):108–115

    Google Scholar 

  • Pereira AR, Angelocci LR, Sentelhas PC (2002) Agrometeorologia “Fundamentos e Aplicações Práticas”. LivrariaEditora Agropecuária, Guaiba-RS

  • Roberto JVB, de Souza BB (2014) Use of infrared thermography in veterinary medicine and animal production. J Anim Behav Biometeorol 2:73–84

    Article  Google Scholar 

  • Roberto JVB, Souza BB, Furtado DA, Delfino LJB, Marques BAA (2014) Gradientes térmicos e respostas fisiológicas de caprinos no semiárido brasileiro utilizando a termografia infravermelha. J Anim Behav Biometeorol 2:11–19

    Article  Google Scholar 

  • Sevegnani KB, Fernandes DPB, Silva SH (2016) Evaluation of thermorregulatory capacity of dairy buffaloes using infrared thermography. Eng Agric 36:1–12

  • Shao B, Xin H (2008) A real-time computer vision assessment and control of thermal comfort for group-housed pigs. Comput Electron Agric 62:15–21

    Article  Google Scholar 

  • Silva RG (2006) Predição da configuração de sombras de árvores em pastagens para bovinos. Eng Agric 26:36–281

  • Souza CF, Tinôco IFF, Baêta FC, Ferreira WPM, Silva RS (2002) Avaliação de materiais alternativos para confecção do termômetro de globo. Ciênc Agrotec 26:157–164

    Google Scholar 

  • Stewart M, Webster JR, Schaefer AL, Cook NJ, Scott SL (2005) Infra-red thermography as a non-invasive tool to study animal welfare. Anim Welf 14:319–325

    CAS  Google Scholar 

  • Thom EC (1959) The discomfort index. Weatherwise 12(1):57–60

    Article  Google Scholar 

  • Thompson J, Marvin M (2005) Experimental research using thermography to locate heat signatures from caves. National Cave and Karst Management Symposium: 102–114

  • Trumbo BA, Wise LM, Hudy M (2012) Influence of protective shielding devices on recorded air temperature accuracy for a rugged outdoor thermal sensor used in climate change modeling. Natl Environ Sci 3(1):42–50

    Google Scholar 

Download references

Acknowledgements

We thank Universidade Federal do Recôncavo da Bahia (UFRB), Embrapa Beef Cattle, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Amparo à Pesquisa do Estado da Bahia (Fapesb), Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul (Fundect). Without their support, this research would not have been possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilla Diniz Barreto.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, C.D., Alves, F.V., de Oliveira Ramos, C.E.C. et al. Infrared thermography for evaluation of the environmental thermal comfort for livestock. Int J Biometeorol 64, 881–888 (2020). https://doi.org/10.1007/s00484-020-01878-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-020-01878-0

Keywords

Navigation