Anttonen H, Hiltunen E (2009) The effect of wind on thermal insulation of military clothing. In: RTO Human Factors and Medicine Panel Symposium, RTO-MP-HFM-168, Neuilly-sue-Seine. NATO Science and Technology Organization, pp 1-12
Google Scholar
ASTM F2370–16 (2016) Standard Test Method for Measuring the Evaporative Resistance of Clothing Using a Sweating Manikin. ASTM international, West Conshohocken. https://doi.org/10.1520/f2370-16
Chen Y, Fan J, Qian X, Zhang W (2004) Effect of garment fit on thermal insulation and evaporative resistance. Text Res J 74:742–748. https://doi.org/10.1177/004051750407400814
Ding D, Tang T, Song G, McDonald A (2011) Characterizing the performance of a single-layer fabric system through a heat and mass transfer model-part II: thermal and evaporative resistances. Text Res J 81:945–958. https://doi.org/10.1177/0040517510395994
Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015a) Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition. Text Res J 85:2196–2207. https://doi.org/10.1177/0040517514551458
Frackiewicz-Kaczmarek J, Psikuta A, Bueno MA, Rossi RM (2015b) Effect of garment properties on air gap thickness and the contact area distribution. Text Res J 85:1907–1918. https://doi.org/10.1177/0040517514559582
Havenith G et al (2008) Apparent latent heat of evaporation from clothing: attenuation and “heat pipe” effects. J Appl Physiol 104:142–149. https://doi.org/10.1152/japplphysiol.00612.2007
ISO 9920:2007 (2007) Ergonomics of the thermal environment — Estimation of thermal insulation and water vapour resistance of a clothing ensemble. International Organization for Standardization, Geneva
Lotens WA, Havenith G (1988) Ventilation of rain wear determined by a tracer gas method. In: Mekjavic IB, Banister EW, Morison JB (eds) Environmental ergonomics, Philadelphia. Taylor and Francis, pp 162–176
Lu Y, Wang F, Peng H, Shi W, Song G (2016) Effect of sweating set rate on clothing real evaporative resistance determined on a sweating thermal manikin in a so-called isothermal condition (Tmanikin = Ta = Tr). Int J Biometeorol 60:481–488. https://doi.org/10.1007/s00484-015-1029-3
Lu Y, Wang F, Wan X, Song G, Shi W, Zhang C (2015a) Clothing resultant thermal insulation determined on a movable thermal manikin. Part I: effects of wind and body movement on total insulation. Int J Biometeorol 59:1475–1486. https://doi.org/10.1007/s00484-015-0958-1
Article
Google Scholar
Lu Y, Wang F, Wan X, Song G, Zhang C, Shi W (2015b) Clothing resultant thermal insulation determined on a movable thermal manikin. Part II: effects of wind and body movement on local insulation. Int J Biometeorol 59:1487–1498. https://doi.org/10.1007/s00484-015-0959-0
Article
Google Scholar
Luo N, Weng W, Fu M, Yang J, Han Z (2014) Experimental study of the effects of human movement on the convective heat transfer coefficient. Exp Therm Fluid Sci 57:40–56. https://doi.org/10.1016/j.expthermflusci.2014.04.001
Mert E, Boehnisch S, Psikuta A, Bueno MA, Rossi RM (2016) Contribution of garment fit and style to thermal comfort at the lower body. Int J Biometeorol 60:1995–2004. https://doi.org/10.1007/s00484-016-1258-0
Mert E, Psikuta A, Arevalo M, Charbonnier C, Luible-Bar C, Bueno M-A, Rossi RM (2018) A validation methodology and application of 3D garment simulation software to determine the distribution of air layers in garments during walking. Measurement 117:153–164. https://doi.org/10.1016/j.measurement.2017.11.042
Article
Google Scholar
Mert E, Psikuta A, Bueno MA, Rossi RM (2015) Effect of heterogenous and homogenous air gaps on dry heat loss through the garment. Int J Biometeorol 59:1701–1710. https://doi.org/10.1007/s00484-015-0978-x
Mert E, Psikuta A, Bueno MA, Rossi RM (2017) The effect of body postures on the distribution of air gap thickness and contact area. Int J Biometeorol 61:363–375. https://doi.org/10.1007/s00484-016-1217-9
Oliveira AV, Gaspar AR, Francisco SC, Quintela DA (2012) Convective heat transfer from a nude body under calm conditions: assessment of the effects of walking with a thermal manikin. Int J Biometeorol 56:319–332. https://doi.org/10.1007/s00484-011-0436-3
Psikuta A, Mert E, Annaheim S, Rossi RM (2018) Local air gap thickness and contact area models for realistic simulation of human thermo-physiological response. Int J Biometeorol 62:1121-1134. https://doi.org/10.1007/s00484-018-1515-5
Wang F et al (2012) Localised boundary air layer and clothing evaporative resistances for individual body segments. Ergonomics 55:799–812. https://doi.org/10.1080/00140139.2012.668948
Wang F, Peng H, Shi W (2016) The relationship between air layers and evaporative resistance of male Chinese ethnic clothing. Appl Ergon 56:194–202. https://doi.org/10.1016/j.apergo.2016.04.005