Hydrogen sulfide biosynthesis is impaired in the osteoarthritic joint

  • Elena F. BurgueraEmail author
  • Ángela Vela-Anero
  • Lucía Gato-Calvo
  • Carlos Vaamonde-García
  • Rosa Meijide-Faílde
  • Francisco J. BlancoEmail author
Special Issue: Balneology


Osteoarthritis (OA) is the most common form of arthritis and it is a leading cause of disability in the elderly. Its complete etiology is not known although there are several metabolic, genetic, epigenetic, and local contributing factors involved. At the moment, there is no cure for this pathology and treatment alternatives to retard or stop its progression are intensively being sought. Hydrogen sulfide (H2S) is a small gaseous molecule and is present in sulfurous mineral waters as its active component. Data from recent clinical trials shows that balneotherapy (immersion in mineral and/or thermal waters from natural springs) in sulfurous waters can improve OA symptoms, in particular, pain and function. Yet, the underlying mechanisms are poorly known. Hydrogen sulfide is also considered, with NO and CO, an endogenous signaling gasotransmitter. It is synthesized endogenously with the help of three enzymes, cystathionine gamma-lyase (CTH), cystathionine beta-synthase (CBS), and 3-mercaptopyruvate sulfurtransferase (3-MPST). Here, the expression of these three enzymes was demonstrated by quantitative real-time polymerase chain reaction (qRT-PCR) and their protein abundance [by immunohistochemistry and Western blot (WB)] in human articular cartilage. No significant differences were found in CBS or CTH expression or abundance, but mRNA and protein levels of 3-MPST were significantly reduced in cartilage form OA donors. Also, the biosynthesis of H2S from OA cartilage, measured with a specific microelectrode, was significantly lower than in OA-free tissue. Yet, no differences were found in H2S concentration in serum from OA patients and OA-free donors. The current results suggest that reduced levels of the mitochondrial enzyme 3-MPST in OA cartilage might be, at least in part, responsible for a reduction in H2S biosynthesis in this tissue and that impaired H2S biosynthesis in the joint might be a contributing factor to OA. This could contribute to explain why exogenous supplementation of H2S, for instance with sulfurous thermal water, has positive effects in OA patients.


Osteoarthritis Hydrogen sulfide Human articular cartilage Serum Mitochondria Sulfurous thermal waters 





3-Mercaptopyruvate sulfurtransferase


Alzheimer’s disease


Acute exacerbation of COPD


Cysteine aminotransferase


Cystathionine β-synthase


Complementary deoxyribonucleic acid


Galician Research Ethics Committee (Comité Autonómico de Ética da Investigación de Galicia)


Coronary heart disease


Carbon monoxide


Chronic obstructive pulmonary disease


Cystathionine γ-lyase


Cerebrovascular disease




Hydrogen sulfide






Hypoxanthine-guanine phosphoribosyltransferase


Matrix metalloproteinases


Messenger RNA


Normal (non-OA), healthy control


Sample size


Nicotinamide adenine dinucleotide


Nicotinamide adenine dinucleotide phosphate


Sodium hydrosulfide


Nitric oxide


Nuclear factor erythroid 2–related factor 2




Osteoarthritis Research Society International


Polyacrylamide gel electrophoresis


Rheumatoid arthritis


ribonucleic acid


Reactive oxygen species


Room temperature


Sodium dodecyl sulfate


Standard error of the mean


Superoxide dismutase


Total anti-oxidant capacity


Tata-box-binding protein


Regulatory T cells


Vascular dementia


Western blot



Authors want to express their gratitude to the patients that made possible this study and to the Rheumatology and Orthopedic Services of the University Hospital A Coruña for their help in obtaining the human samples.

Authors’ contributions

All authors were involved in drafting or critically reading the manuscript for important intellectual content, and all authors approved the final version. Conception and design: EF Burguera, R Meijide-Failde, FJ Blanco. Data acquisition: Á Vela-Anero, L. Gato-Calvo, C Vaamonde-García. Analysis and interpretation of data: Á Vela-Anero, EF Burguera, FJ Blanco. Obtaining of funding: R Meijide-Failde, FJ Blanco.

Funding information

This work was financially supported in part through projects (PI12/00329; PI16/02124; RETIC-RIER-RD12/0009/0018; and Proteo-Red/ISCIII) from ISCIII- General Subdirection of Assesment and Promotion of the Research – European Regional Development Fund (FEDER) “A way of making Europe”, and in part by Grant IN607A 2017/11 from Xunta de Galicia. CIBER-BBN is a national initiative of ISCIII. LGC is financially supported by contract FPU13/06041 (Ministerio de Educación, Cultura y Deporte). CVG was financially supported by Xunta de Galicia (Postdoctoral contract POS-A/2013/206). EFB is financially supported by Grant PMP15/00032 from Fondo Investigación Sanitaria-Spain (ISCIII).

Compliance with ethical standards


The funders did not contribute to data collection, analysis or interpretation of the data, manuscript preparation, or submission.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Abe K, Kimura H (1996) The possible role of hydrogen sulfide as an endogenous neuromodulator. J Neurosci 16:1066–1071. CrossRefGoogle Scholar
  2. Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA (1984) A Critical-review of the literature on hydrogen-sulfide toxicity. Crit Rev Toxicol 13:25–97. CrossRefGoogle Scholar
  3. Benedetti S, Benvenuti F, Nappi G, Fortunati NA, Marino L, Aureli T, De Luca S, Pagliarani S, Canestrari F (2009) Antioxidative effects of sulfurous mineral water: protection against lipid and protein oxidation. Eur J Clin Nutr 63:106–112CrossRefGoogle Scholar
  4. Benedetti S, Canino C, Tonti G, Medda V, Calcaterra P, Nappi G, Salaffi F, Canestrari F (2010) Biomarkers of oxidation, inflammation and cartilage degradation in osteoarthritis patients undergoing sulfur-based spa therapies. Clin Biochem 43:973–978. CrossRefGoogle Scholar
  5. Blanco FJ, Lopez-Armada MJ, Maneiro E (2004) Mitochondrial dysfunction in osteoarthritis. Mitochondrion 4:715–728. CrossRefGoogle Scholar
  6. Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7:161–169. CrossRefGoogle Scholar
  7. Brancaleone V, Roviezzo F, Vellecco V, De Gruttola L, Bucci M, Cirino G (2008) Biosynthesis of H(2)S is impaired in non-obese diabetic (NOD) mice. Br J Pharmacol 155:673–680. CrossRefGoogle Scholar
  8. Burguera EF, Vela-Anero A, Magalhaes J, Meijide-Failde R, Blanco F (2014) Effect of hydrogen sulfide sources on inflammation and catabolic markers on interleukin 1 beta-stimulated human articular chondrocytes. Osteoarthr Cartil 22:1026–1035. CrossRefGoogle Scholar
  9. Burguera EF, Meijide-Faílde R, Blanco FJ (2016) Hydrogen sulfide and inflammatory joint diseases. Curr Drug Targets 18:1641–1652. CrossRefGoogle Scholar
  10. Chang L, Geng B, Yu F, Zhao J, Jiang H, Du J, Tang C (2008) Hydrogen sulfide inhibits myocardial injury induced by homocysteine in rats. Amino Acids 34:573–585. CrossRefGoogle Scholar
  11. Cheleschi S, De Palma A, Pascarelli A, Giordano N, Galeazzi M, Tenti S, Fioravanti A (2017) Could Oxidative stress regulate the expression of microRNA-146a and MicroRNA-34a in human osteoarthritic chondrocyte cultures? Int J Mol Sci 18(12). CrossRefGoogle Scholar
  12. Chen YH, Yao WZ, Geng B, Ding YL, Lu M, Zhao MW, Tang CS (2005) Endogenous hydrogen sulfide in patients with COPD. Chest 128:3205–3211. CrossRefGoogle Scholar
  13. Chen L, Ingrid S, Ding Y, Liu Y, Qi J, Tang C, Du JB (2007) Imbalance of endogenous homocysteine and hydrogen sulfide metabolic pathway in essential hypertensive children. Chin Med J 120:389–393. CrossRefGoogle Scholar
  14. Chen D, Shen J, Zhao W, Wang T, Han L, Hamilton JL, Im HJ (2017) Osteoarthritis: toward a comprehensive understanding of pathological mechanism. Bone Res 5:16044. CrossRefGoogle Scholar
  15. Cillero-Pastor B, Rego-Perez I, Oreiro N, Fernandez-Lopez C, Blanco FJ (2013) Mitochondrial respiratory chain dysfunction modulates metalloproteases -1,-3 and -13 in human normal chondrocytes in culture. BMC Musculoskelet Disord 14:235. CrossRefGoogle Scholar
  16. Collin M, Anuar FBM, Murch O, Bhatia M, Moore PK, Thiemermann C (2005) Inhibition of endogenous hydrogen sulfide formation reduces the organ injury caused by endotoxemia. Br J Pharmacol 146:498–505. CrossRefGoogle Scholar
  17. Díaz-Prado SM, Cicione C, Muiños-López E, Hermida-Gómez T, Oreiro N, Fernández-López C, Blanco FJ (2012) Characterization of microRNA expression profiles in normal and osteoarthritic human chondrocytes. BMC Musculoskelet Disord 13:144. CrossRefGoogle Scholar
  18. Ekmekcioglu C, Strauss-Blasche G, Holzer F, Marktl W (2002) Effect of sulfur baths on antioxidative defense systems, peroxide concentrations and lipid levels in patients with degenerative osteoarthritis. Forsch Komplementarmed Klass Naturheilkd 9:216–220Google Scholar
  19. Fioravanti A, Cantarini L, Guidelli GM, Galeazzi M (2011) Mechanisms of action of spa therapies in rheumatic diseases: what scientific evidence is there? Rheumatol Int 31:1–8. CrossRefGoogle Scholar
  20. Fioravanti A, Giannitti C, Cheleschi S, Simpatico A, Pascarelli NA, Galeazzi M (2015) Circulating levels of adiponectin, resistin, and visfatin after mud-bath therapy in patients with bilateral knee osteoarthritis. Int J Biometeorol 59:1691–1700. CrossRefGoogle Scholar
  21. Fioravanti A, Karagülle M, Bender T, Karagülle MZ (2017) Balneotherapy in osteoarthritis: Facts, fiction and gaps in knowledge. Eur J Integr 9:148–150. CrossRefGoogle Scholar
  22. Forestier R, Erol Forestier FB, Francon A (2016) Spa therapy and knee osteoarthritis: A systematic review. Ann Phys Rehabil Med 59:216–226CrossRefGoogle Scholar
  23. Fox B, Schantz JT, Haigh R, Wood ME, Moore PK, Viner N, Spencer JP, Winyard PG, Whitman M (2012) Inducible hydrogen sulfide synthesis in chondrocytes and mesenchymal progenitor cells: is H2S a novel cytoprotective mediator in the inflamed joint? J Cell Mol Med 16:896–910. CrossRefGoogle Scholar
  24. Geng B, Cui Y, Zhao J, Yu F, Zhu Y, Xu G, Zhang Z, Tang C, Du J (2007) Hydrogen sulfide downregulates the aortic L-arginine/nitric oxide pathway in rats. Am J Phys Regul Integr Comp Phys 293:R1608–R1618. CrossRefGoogle Scholar
  25. Geyer M, Schönfeld C (2018) Novel insights into the pathogenesis of osteoarthritis. Curr Rheumatol Rev 14:98–107. CrossRefGoogle Scholar
  26. Harzy T, Ghani N, Akasbi N, Bono W, Nejjari C (2009) Short- and long-term therapeutic effects of thermal mineral waters in knee osteoarthritis: a systematic review of randomized controlled trials. Clin Rheumatol 28:501–507. CrossRefGoogle Scholar
  27. Henrotin YE, Bruckner P, Pujol JPL (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthr Cartil 11:747–755. CrossRefGoogle Scholar
  28. Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS (2010) Neuroprotective effects of hydrogen sulfide on Parkinson’s disease rat models. Aging Cell 9:135–146. CrossRefGoogle Scholar
  29. Hunter DJ, Bierma-Zeinstra S (2019) Osteoarthritis. Lancet 393(10182):1745–1759. CrossRefGoogle Scholar
  30. Hyspler R, Ticha A, Indrova M, Zadak Z, Hysplerova L, Gasparic J, Churácek J (2002) A simple, optimized method for the determination of sulphide in whole blood by GC-MS as a marker of bowel fermentation processes. J Chromatogr B Anal Technol Biomed Life Sci 770:255–259. CrossRefGoogle Scholar
  31. Jiang H, Wu H, Li Z, Geng B, Tang CS (2005) Changes of the new gaseous transmitter H2S in patients with coronary heart disease. Di Yi Jun Yi Da Xue Xue 25:951–954 ChineseGoogle Scholar
  32. Kamoun P (2004) Endogenous production of hydrogen sulfide in mammals. Amino Acids 26:243–254. CrossRefGoogle Scholar
  33. Kimura H (2011) Hydrogen sulfide: its production, release and functions. Amino Acids 41:113–121. CrossRefGoogle Scholar
  34. Kovács C, Pecze M, Tihanyi Á, Kovács L, Balogh S, Bender T (2012) The effect of sulphurous water in patients with osteoarthritis of hand. Double-blind, randomized, controlled follow-up study. Clin Rheumatol 31:1437–1442. CrossRefGoogle Scholar
  35. Kovács C, Bozsik Á, Pecze M, Borbély I, Fogarasi A, Kovács L, Tefner IK, Bender T (2016) Effects of sulfur bath on hip osteoarthritis: a randomized, controlled, single-blind, follow-up trial: a pilot study. Int J Biometeorol 60:1675–1680. CrossRefGoogle Scholar
  36. Kraus VB, Blanco FJ, Englund M, Karsdal MA, Lohmander LS (2015) Call for standardized definitions of osteoarthritis and risk stratification for clinical trials and clinical use. Osteoarthr Cartil 23:1233–1241. CrossRefGoogle Scholar
  37. Li L, Bhatia M, Zhu YZ, Zhu YC, Ramnath RD, Wang ZJ, Anuar FB, Whiteman M, Salto-Tellez M, Moore PK (2005) Hydrogen sulfide is a novel mediator of lipopolysaccharide-induced inflammation in the mouse. FASEB J 19:1196–1198. CrossRefGoogle Scholar
  38. Liu XQ, Liu XQ, Jiang P, Huang H, Yan Y (2008) Plasma levels of endogenous hydrogen sulfide and homocysteine in patients with Alzheimer’s disease and vascular dementia and the significance thereof. Zhonghua Yi Xue Za Zhi 88:2246–2249. CrossRefGoogle Scholar
  39. Maneiro E, Martin MA, de Andres MC, Lopez-Armada MJ, Fernandez-Sueiro JL, del Hoyo P, Galdo F, Arenas J, Blanco FJ (2003) Mitochondrial respiratory activity is altered in osteoarthritic human articular chondrocytes. Arthritis Rheum 48:700–708. CrossRefGoogle Scholar
  40. Marchev AS, Dimitrova PA, Burns AJ, Kostov RV, Dinkova-Kostova AT, Georgiev MI (2017) Oxidative stress and chronic inflammation in osteoarthritis: can NRF2 counteract these partners in crime? Ann N Y Acad Sci 140:114–135. CrossRefGoogle Scholar
  41. Martelli A, Testai L, Breschi MC, Blandizzi C, Virdis A, Taddei S, Calderone V (2012) Hydrogen sulphide: novel opportunity for drug discovery. Med Res Rev 32:1093–1130. CrossRefGoogle Scholar
  42. Mirandola P, Gobbi G, Sponzilli I, Pambianco M, Malinverno C, Cacchioli A, De Panfilis G, Vitale M (2007) Exogenous hydrogen sulfide induces functional inhibition and cell death of cytotoxic lymphocytes subsets. J Cell Physiol 213:826–833CrossRefGoogle Scholar
  43. Modis K, Asimakopoulou A, Coletta C, Papapetropoulos A, Szabo C (2013) Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway. Biochem Biophys Res Commun 433:401–407. CrossRefGoogle Scholar
  44. Muniraj N, Stamp LK, Badiei A, Hegde A, Cameron V, Bhatia M (2014) Hydrogen sulfide acts as a pro-inflammatory mediator in rheumatic disease. Int J Rheum Dis 20:182–189. CrossRefGoogle Scholar
  45. Nasermoaddeli A, Kagamimori S (2005) Balneotherapy in medicine: A review. Environ Health Prev Med 10:171–179. CrossRefGoogle Scholar
  46. Olson KR (2009) Is hydrogen sulfide a circulating “gasotransmitter” in vertebrate blood? Biochim Biophys Acta 1787:856–863. CrossRefGoogle Scholar
  47. Olson KR, DeLeon ER, Liu F (2014) Controversies and conundrums in hydrogen sulfide biology. Nitric Oxide 41:11–26. CrossRefGoogle Scholar
  48. Prandelli C, Parola C, Buizza L, Delbarba A, Marziano M, Salvi V, Zacchi V, Memo M, Sozzani S, Calza S, Uberti D, Bosisio D (2013) Sulphurous thermal water increases the release of the anti-inflammatory cytokine IL-10 and modulates antioxidant enzyme activity. Int J Immunopathol Pharmacol 26:633–646CrossRefGoogle Scholar
  49. Predmore BL, Lefer DJ, Gojon G (2012) Hydrogen Sulfide in Biochemistry and Medicine. Antioxid Redox Signal 17:119–140. CrossRefGoogle Scholar
  50. R Core Team 2012 R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria URL http://www R-project org/Google Scholar
  51. Rego-Perez I, Fernandez-Moreno M, Fernandez-Lopez C, Arenas J, Blanco FJ (2008) Mitochondrial DNA haplogroups: role in the prevalence and severity of knee osteoarthritis. Arthritis Rheum 58:2387–2396. CrossRefGoogle Scholar
  52. Renga B (2011) Hydrogen sulfide generation in mammals: the molecular biology of cystathionine-beta- synthase (CBS) and cystathionine-gamma-lyase (CSE). Inflamm Allergy Drug Targets 10:85–91. CrossRefGoogle Scholar
  53. Richardson CJ, Magee EAM, Cummings JH (2000) A new method for the determination of sulphide in gastrointestinal contents and whole blood by microdistillation and ion chromatography. Clin Chim Acta 293:115–125. CrossRefGoogle Scholar
  54. Rivers JR, Badiei A, Bhatia M (2012) Hydrogen sulfide as a therapeutic target for inflammation. Expert Opin Ther Targets 16:439–449. CrossRefGoogle Scholar
  55. Sen U, Basu P, Abe OA, Givvimani S, Tyagi N, Metreveli N, Shah KS, Passmore JC, Tyagi SC (2009) Hydrogen sulfide ameliorates hyperhomocysteinemia-associated chronic renal failure. Am J Physiol Ren Physiol 297:F410–F419. CrossRefGoogle Scholar
  56. Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 146:623–626. CrossRefGoogle Scholar
  57. Szabo C (2007) Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 6:917–935. CrossRefGoogle Scholar
  58. Tamizhselvi R, Moore PK, Bhatia M (2007) Hydrogen sulfide acts as a mediator of inflammation in acute pancreatitis: in vitro studies using isolated mouse pancreatic acinar cells. J Cell Mol Med 11:315–326. CrossRefGoogle Scholar
  59. Tang XQ, Yang CT, Chen J, Yin WL, Tian SW, Hu B, Feng JQ, Li YJ (2008) Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 35:180–186. CrossRefGoogle Scholar
  60. Ubuka T (2002) Assay methods and biological roles of labile sulfur in animal tissues. J Chromatogr B Anal Technol Biomed Life Sci 781:227–249.ç CrossRefGoogle Scholar
  61. Vaamonde-Garcia C, Riveiro-Naveira RR, Valcarcel-Ares MN, Hermida-Carballo L, Blanco FJ, Lopez-Armada MJ (2012) Mitochondrial dysfunction increases inflammatory responsiveness to cytokines in normal human chondrocytes. Arthritis Rheum 64:2927–2936. CrossRefGoogle Scholar
  62. Vaamonde-Garcia C, Malaise O, Charlier E, Deroyer C, Neuville S, Gillet P, Kurth W, Meijide-Failde R, Malaise MG, de Seny D (2019) 15-Deoxy-Δ-12, 14-prostaglandin J2 acts cooperatively with prednisolone to reduce TGF-β-induced pro-fibrotic pathways in human osteoarthritis fibroblasts. Biochem Pharmacol 165:66–78. CrossRefGoogle Scholar
  63. Valcarcel-Ares MN, Riveiro-Naveira RR, Vaamonde-Garcia C, Loureiro J, Hermida-Carballo L, Blanco FJ, Lopez-Armada MJ (2014) Mitochondrial dysfunction promotes and aggravates the inflammatory response in normal human synoviocytes. Rheumatology 53:1332–1343. CrossRefGoogle Scholar
  64. Vela-Anero Á, Hermida-Gómez T, Gato-Calvo L, Vaamonde-García C, Díaz-Prado S, Meijide-Faílde R, Blanco FJ, Burguera EF (2017) Long-term effects of hydrogen sulfide on the anabolic-catabolic balance of articular cartilage in vitro. Nitric Oxide 70:42–50. CrossRefGoogle Scholar
  65. Wang R (2002) Two’s company, three’s a crowd: can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798. CrossRefGoogle Scholar
  66. Whiteman M, Moore PK (2009) Hydrogen sulfide and the vasculature: a novel vasculoprotective entity and regulator of nitric oxide bioavailability? J Cell Mol Med 13:488–507. CrossRefGoogle Scholar
  67. Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32. CrossRefGoogle Scholar
  68. Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC (2010a) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53:1722–1726. CrossRefGoogle Scholar
  69. Whiteman M, Haigh R, Tarr JM, Gooding KM, Shore AC, Winyard PG (2010b) Detection of hydrogen sulfide in plasma and knee-joint synovial fluid from rheumatoid arthritis patients: relation to clinical and laboratory measures of inflammation. Ann N Y Acad Sci 1203:146–150. CrossRefGoogle Scholar
  70. Yadav PK, Yamada K, Chiku T, Koutmos M, Banerjee R (2013) Structure and kinetic analysis of H2S production by human mercaptopyruvate sulfurtransferase. J Biol Chem 288:20002–20013. CrossRefGoogle Scholar
  71. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H(2)S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590. CrossRefGoogle Scholar
  72. Yang R, Qu C, Zhou Y, Konkel JE, Shi S, Liu Y, Chen C, Liu S, Liu D, Chen Y, Zandi E, Chen W, Zhou Y, Shi S (2015) Hydrogen sulfide promotes Tet1- and Tet2-mediated Foxp3 demethylation to drive regulatory T cell differentiation and maintain immune homeostasis. Immunity. 43:251–263. CrossRefGoogle Scholar
  73. Zhang H, Zhi L, Moore PK, Bhatia M (2006) Role of hydrogen sulfide in cecal ligation and puncture-induced sepsis in the mouse. Am J Phys Lung Cell Mol Phys 290:L1193–L1201. CrossRefGoogle Scholar
  74. Zhao WM, Ndisang JF, Wang R (2003) Modulation of endogenous production of H2S in rat tissues. Can J Physiol Pharmacol 81:848–853. CrossRefGoogle Scholar
  75. Zhao X, Zhang LK, Zhang CY, Zeng XJ, Yan H, Jin HF, Tang CS, DU JB (2008) Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats. Hypertens Res 31:1619–1630. CrossRefGoogle Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  1. 1.Grupo de Investigación en Reumatología (GIR), Agrupación Estratégica CICA-INIBIC, Complexo Hospitalario Universitario A Coruña, SergasInstituto de Investigación Biomédica A Coruña-INIBICA CoruñaSpain
  2. 2.CIBER-BBNMadridSpain
  3. 3.Grupo de Terapia Celular e Medicina Regenerativa, Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, SergasUniversidad de A CoruñaA CoruñaSpain
  4. 4.Grupo de Investigación en Reumatología (GIR), Departamento de Fisioterapia, Medicina y Ciencias Biomédicas, Instituto de Investigación Biomédica de A Coruña (INIBIC), Complexo Hospitalario Universitario A Coruña, SergasUniversidad de A CoruñaA CoruñaSpain
  5. 5.ProteoRed/ISCIIIMadridSpain

Personalised recommendations