Investigating climate suitability conditions for malaria transmission and impacts of climate variability on mosquito survival in the humid tropical region: a case study of Obafemi Awolowo University Campus, Ile-Ife, south-western Nigeria

Abstract

This study investigated impacts of climate variability on mosquito survival at Obafemi Awolowo University Campus, Ile-Ife, south-western Nigeria, and determined the regional climate suitability level for malaria transmission between 1996 and 2015. It employed some established climate-dependent models to simulate daily mosquito survival probabilities, p and a fuzzy logic suitability (FLS) model to determine the suitability conditions for malaria transmission across seasons. Multivariate regression analysis and lag correlation up to 4 months were performed to examine contributions of climate variation to the reported malaria cases. Results revealed that mosquitoes could survive all-year round with p values ranging between 0.40 and 0.96 under the prevailing mean climate. However, the climate suitability level for transmission of malaria was ‘moderate’ (0.45 < p ≤ 0.60) in the dry season but ‘very high’ (0.75 < p ≤ 0.96) in the wet. Rainfall was found to be the best predictor (r = 0.7, R2 = 0.448, p < 0.05) and no significant time-delay effect was noticed between climatic variables and malaria occurrence except for wind speed at 1-month lag. About 61% (multiple R2= 0.613 at p = 0.1) of monthly variations in reported malaria cases were accounted for by climate variability. Further probe revealed that non-climatic factors such as behavioural and socio-cultural status of the students’ population played a very important role in malaria transmission and occurrence. The findings suggested that effective malaria control and interventions must integrate the crucial roles of both climatic and non-climatic factors in the study area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Abah AE, Temple B (2015) Prevalence of malaria parasite among asymptomatic primary school children in Angiama Community, Bayelsa State, Nigeria. Trop Med Surg 4:203. https://doi.org/10.4172/2329-9088.1000203

    Article  Google Scholar 

  2. Abiodun GJ, Maharaj R, Witbooi P, Okosun KO (2016) Modelling the influence of temperature and rainfall on the population dynamics of Anopheles arabiensis. Malar J 15:364. https://doi.org/10.1186/s12936-016-1411-6

    Article  Google Scholar 

  3. Adefemi K, Awolaran O, Wuraola C (2015) Social and environmental determinants of malaria in under five children in Nigeria: a review. Int J Community Med Public Health 2(4):345–350

    Article  Google Scholar 

  4. Adeola AM, Botai JO, Rautenbach H, Adisa OM, Ncongwane KP, Botai CM, Adebayo-Ojo TC (2017) Climatic variables and malaria morbidity in Mutale Local Municipality, South Africa: a 19-year data analysis. Int J Environ Res Public Health 14:1360. https://doi.org/10.3390/ijerph14111360

    Article  Google Scholar 

  5. Afrane YA, Zhou G, Lawson BW, Githeko AK, Yan G (2006) Effects of microclimatic changes caused by deforestation on the survivorship and reproductive fitness of Anopheles gambiae in western Kenya highlands. Am J Trop Med Hyg 74:772–778

    Article  Google Scholar 

  6. Akinbobola A, Omotosho JB (2013) Predicting malaria occurrence in southwest and north central Nigeria using meteorological parameters. Int J Biometeorol 57(5):721–728

    CAS  Article  Google Scholar 

  7. Ameneshewa B, Service MW (1996) The relationship between female body size and survival rate of the malaria vector Anopheles arabiensis in Ethiopia. Med Vet Entomol 10:170–172

    CAS  Article  Google Scholar 

  8. Bassey SE, Izah SC (2017) Some determinant factors of malaria orevalence in Nigeria. Mosq Res 7(7):48–58

    Google Scholar 

  9. Bayoh N (2001) Studies on the development and survival of Anopheles gambiae sensu stricto at various temperatures and relative humidities. PhD thesis: University of Durham

  10. Blobel D, Meyer-Ohlendorf N, Schlosser-Allera C, Steel P (2006) United Nations framework Convention on Climate Change handbook. Climate Change Secretariat (UNFCCC), Bonn

    Google Scholar 

  11. Chua TH (2012) Modelling the effect of temperature change on the extrinsic incubation period and reproductive number of Plasmodium falciparum in Malaysia. Trop Biomed 29:121–128

    CAS  Google Scholar 

  12. Craig MH, Snow RW, Le Sueur D (1999) A climate-based distribution model of malaria transmission in Sub-Saharan Africa. Parasitol Today 15(3):105–110

    CAS  Article  Google Scholar 

  13. Ermert V, Fink AH, Jones AE, Morse AP (2011) Development of a new version of the Liverpool Malaria Model. I. Refining the parameter settings and mathematical formulation of basic processes based on a literature review. Malar J 10:35

    Article  Google Scholar 

  14. Ferrão JL, Mendes JM, Painho M (2017) Modelling the influence of climate on malaria occurrence in Chimoio Municipality, Mozambique. Parasit Vectors 10:260

    Article  Google Scholar 

  15. Fouet C, Gray E, Besansky NJ, Costantini C (2012) Adaptation to aridity in the malaria mosquito Anopheles gambiae: chromosomal inversion polymorphism and body size influence resistance to desiccation. PLoS One 7:e34841

    CAS  Article  Google Scholar 

  16. Gerba DD, Ameh JB, Whong CMZ, Aminu-Mukhtar M (2016) Prevalence of malaria parasites among blood donors in Kaduna, Nigeria. Int J Res Med Sci 4(6):2112–2119

    Article  Google Scholar 

  17. Githeko AK, Ndegwa W (2001) Predicting malaria epidemics in the Kenyan highlands using climate data: a tool for decision makers. Glob Chang Hum Health 2(1):54–63

    Article  Google Scholar 

  18. Gray EM, Bradley TJ (2005) Physiology of desiccation resistance in Anopheles gambiae and Anopheles arabiensis. Am J Trop Med Hyg 73:553–559

    Article  Google Scholar 

  19. Hardy JT (2003) Climate change: causes, effects and solutions. Wiley, New York

    Google Scholar 

  20. Harrington LC, Vermeylen F, Jones JJ, Kitthawee S, Sithiprasasna R, Edman JD, Scott TW (2008) Age-dependent survival of the dengue vector Aedes aegypti (Diptera: Culicidae) demonstrated by simultaneous release-recapture of different age cohorts. J Med Entomol 45:307–413

    Article  Google Scholar 

  21. Hoshen MB, Morse AP (2004) A weather-driven model of malaria transmission. Malar J 3:32. https://doi.org/10.1186/1475-2875-3-32

    Article  Google Scholar 

  22. Jepson WF, Moutia A, Courtois C (1947) The malaria problem in Mauritius: the bionomics of Mauritian anophelines. Bull Entomol Res 38:177–208

    CAS  Article  Google Scholar 

  23. Kaufmann C, Briegel H (2004) Flight performance of the malaria vectors Anopheles gambiae and Anopheles atroparvus. J Vector Ecol 29(1):140–153

    Google Scholar 

  24. Klutse NAB, Aboagye-Antwi F, Owusu K, Ntiamoa-Baidu Y (2014) Assessment of patterns of climate variables and malaria cases in two ecological zones of Ghana. Open J Ecol 4:764–775

    Article  Google Scholar 

  25. Lelisa S, Wakgari D, Ahmed A (2015) Correlation of climate variability and malaria: a retrospective comparative study, Southwest Ethiopia. Ethiop J Health Sci 25(2):129–138

    Article  Google Scholar 

  26. Lunde TM, Bayoh MN, Lindtjørn B (2013) How malaria models relate temperature to malaria transmission. Parasit Vectors 6(20):1–10

    Google Scholar 

  27. Lyimo EO, Koella JC (1992) Relationship between body size of adult Anopheles gambiae s.l. and infection with the malaria parasite. Plasmodium falciparum. Parasitology 104:233–237

    Article  Google Scholar 

  28. Mandal S, Sarkar RR, Sinha S (2011) Mathematical models of malaria - a review. Malar J 10:202

    Article  Google Scholar 

  29. Martens W (1997) Health impacts of climate change and ozone depletion: an eco-epidemiological modelling approach. PhD thesis. Maastricht, Netherlands: Maastricht University

  30. Martens P, Thomas C (2005) Climate change and malaria risk: complexity and scaling. In: Takken W, Martens P, Bogers R (eds) Environmental change and malaria risk: global and local implications. Springer, Dordrecht

    Google Scholar 

  31. Martens W, Jetten T, Rotmans J, Niessen L (1995a) Climate change and vector-borne diseases: a global modelling perspective. Glob Environ Chang 5:195–209

    Article  Google Scholar 

  32. Martens WJ, Niessen LW, Rotmans J, Jetten TH, McMichael AJ (1995b) Potential impact of global climate change on malaria risk. Environ Health Perspect 103:458–464

    CAS  Article  Google Scholar 

  33. Mboera LE, Magesa SM (2001) The rise and fall of malaria sporozoite rates in Anopheles gambiae s.l. and An. funestus in north-eastern Tanzania. Ann Trop Med Parasitol 95:325–330

    CAS  Article  Google Scholar 

  34. Mordecai EA, Paaijmans KP, Johnson LR, Balzer C, Ben-Horin T, de Moor E, McNally A, Pawar S, Ryan SJ, Smith TC, Lafferty KD (2013) Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol Lett 16(1):22–30

    Article  Google Scholar 

  35. Murdock CC, Sternberg ED, Thomas MB (2016) Malaria transmission potential could be reduced with current and future climate change. Sci Rep 6:27771

    CAS  Article  Google Scholar 

  36. Musa MI, Shohaimi S, Hashim NR, Krishnarajah I (2012) A climate distribution model of malaria transmission in Sudan. Geospat Health 7(1):2736

    Article  Google Scholar 

  37. Ngarakana-Gwasira ET, Bhunu CP, Masocha M, Mashonjowa E (2016) Assessing the role of climate change in malaria transmission in Africa. Malaria Res & Treatment Hindawi Publishing Corporation, pp 1–7. https://doi.org/10.1155/2016/7104291

  38. Omonijo AG, Matzarakis A, Oguntoke O, Adeofun CO (2011) Influence of weather and climate on malaria occurrence based on human-biometeorological methods in Ondo State, Nigeria. J Environ Sci Eng 5:1215–1228

    Google Scholar 

  39. Orok DA, Usang AI, Ikpan OO, Duke EE, Eyo EE, Edadi UE, Ati BU, Udida JA (2016) Prevalence of malaria and typhoid fever co-infection among febrile patients attending College of Health Technology Medical Centre in Calabar, Cross River State, Nigeria. Int J Curr Microbiol App Sci 5(4):825–835

    CAS  Article  Google Scholar 

  40. Owoseni JS, Oluwadare CT, Jegede LI, Ibikunle AM (2014) Socio-economic status and utilization of healthcare facilities in rural community of Southwest, Nigeria. Unique Res J Med Med Sci 2(4):52–67

    Google Scholar 

  41. Oyedele TK (2016) Modelling the impact of variations in weather conditions on mosquitoes breeding and malaria transmission in Ile-Ife, Osun State. M.Sc. thesis, submitted to the Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ile-Ife, Nigeria 111pp

  42. Pam VA, Landan S, Pam DD, Gullek JF, Okoro J, Ogbu KI, Bot CJ, Akinyera AO (2015) The prevalence of malaria and typhoid co-infection in pregnant women attending antenatal in Wuse general hospital Abuja, Nigeria. Sci J Vet Adv 4(6):39–50

    Google Scholar 

  43. Parham PE, Michael E (2010) Modeling the effects of weather and climate change on malaria transmission. Environ Health Perspect 118:620–626

    Article  Google Scholar 

  44. Parham PE, Pople D, Christiansen-Jucht C, Lindsay S, Hinsley W, Michael E (2012) Modeling the role of environmental variables on the population dynamics of the malaria vector Anopheles gambiae sensu stricto. Malar J 11:271

    Article  Google Scholar 

  45. Patz J, Campbell-Lendrum D, Holloway T, Foley JA (2005) Impact of regional climate change on human health. Nature 438:310–317

    CAS  Article  Google Scholar 

  46. Roger DJ, Parker MJ (1993) Vector-borne diseases, models and global change. Lancet 342:1282–1284

    Article  Google Scholar 

  47. Ruiz D, Poveda G, Velez ID, Quinones ML, Rua GL, Velasquez LE, Zuluaga JS (2006) Modelling entomological-climatic interactions of Plasmodium falciparum malaria transmission in two Colombian endemic-regions: contributions to a National Malaria Early Warning System. Malar J 5:66

    Article  Google Scholar 

  48. WHO (1999) The world health report (1999): making a difference. World Health Organization Geneva

  49. WHO (2013) WHO Global Malaria Programme, World Malaria Report. WHO Press, World Health Organization, Geneva

  50. Yamana TK, Eltahir EA (2013) Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ Health Perspect 121:1179–1186

    Article  Google Scholar 

Download references

Acknowledgements

The author is greatly indebted to the Space Applications and Environmental Laboratory (SPAEL) of the Institute of Ecology and Environmental Studies, Medical Health Centre and the Teaching Hospital Complex all located within Obafemi Awolowo University Campus, Ile-Ife, Nigeria, for providing meteorological data and records of reported malaria cases used in this study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olaniran J. Matthew.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Matthew, O.J. Investigating climate suitability conditions for malaria transmission and impacts of climate variability on mosquito survival in the humid tropical region: a case study of Obafemi Awolowo University Campus, Ile-Ife, south-western Nigeria. Int J Biometeorol 64, 355–365 (2020). https://doi.org/10.1007/s00484-019-01814-x

Download citation

Keywords

  • Climate variability
  • Malaria cases
  • Mosquito survival probability
  • FLS
  • Environmental impacts