Abstract
Phenological data have become increasingly important as indicators of long-term climate change. Consequently, long-term homogeneity of the records is an important aspect. In this paper, we apply a breakpoint detection algorithm to the phenological series from the Swiss Phenology Network (SPN). A combination of three statistical tests is applied and different constraints are tested with respect to the choice of reference series. Breakpoint detection is only possible for a fraction of the series due to the shortness of some series and the lack of suitable reference series. Spring phases are more likely to be suitable than fall phases because of their higher spatial correlation. Out of nearly 3000 phenological series with at least 20 data points, only about 5% were found to be significantly inhomogeneous, although a visual validation indicates that many mid-sized breakpoints remained undetected. The detected breakpoints were compared with metadata and more than half of them could be attributed to a change of observer.









Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Alexandersson H, Moberg A (1997) Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int J Climatol 17:25–34. https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J
Anderson DM, Mauk EM, Wahl ER, Morrill C, Wagner AJ, Easterling D, Rutishauser T (2013) Global warming in an independent record of the past 130 years. Geophys Res Lett 40:189–193. https://doi.org/10.1029/2012GL054271
Auchmann R, Brugnara Y, Rutishauser T, Brönnimann S, Gehrig R, Pietragalla B, Begert M, Sigg C, Knechtl V, Calpini B, Konzelmann T (2018) Quality analysis and classification of data series from the Swiss Phenology Network. Technical Report MeteoSwiss 269, MeteoSwiss, Zurich
Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80. https://doi.org/10.1002/joc.1118
Brügger R, Vassella A (2003) Pflanzen im Wandel der Jahreszeiten - Anleitung für phänologische Beobachtungen. Geographica Bernensia, Bern
Cramer W, Yohe GW, Auffhammer M, Huggel C, Molau U, da Silva Dias, MAF, Solow A, Stone DA, Tibig L (2014) Detection and attribution of observed impacts. In: Field CB, Barros VR, Dokken DJ et al (eds) Climate change 2014: impacts, adaptation, and vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA
Čufar K, De Luis M, Saz MA, Črepinšek Z, Kajfež-Bogataj L (2012) Temporal shifts in leaf phenology of beech (Fagus sylvatica) depend on elevation. Trees 26:1091–1100. https://doi.org/10.1007/s00468-012-0686-7
Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45:203–207. https://doi.org/10.1007/s004840100101
Defila C (2008) Plant phenological observations in Switzerland. In: Nekovář J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (eds) The history and current status of plant phenology in Europe. COST office, Bruxelles
Defila C, Clot B, Jeanneret F, Stöckli R (2016) Phenology in Switzerland since 1808. In: Willemses S, Fuger M (eds) From weather observations to atmospheric and climate sciences in Switzerland. vdf Hochschulverlag, Zurich
Dose V, Menzel A (2004) Bayesian analysis of climate change impacts in phenology. Glob Chang Biol 10:259–272. https://doi.org/10.1111/j.1529-8817.2003.00731.x
Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y (2015) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107. https://doi.org/10.1038/nature15402
Ge Q, Wang H, Zheng J, Rutishauser T, Dai J (2014) A 170 year spring phenology index of plants in eastern China. J Geophys Res 119:301–311. https://doi.org/10.1002/2013JG002565
Gubler S, Hunziker S, Begert M, Croci-Maspoli M, Konzelmann T, Brönnimann S, Schwierz C, Oria C, Rosas G (2017) The influence of station density on climate data homogenization using HOMER. Int J Climatol 37:4670–4683. https://doi.org/10.1002/joc.5114
Güsewell S, Pietragalla B, Gehrig R, Furrer R (2018) Representativeness of stations and reliability of data in the Swiss Phenology Network. Technical Report MeteoSwiss 267, MeteoSwiss, Zurich
Hense A, Müller M (2007) Geostatistische Modellierung und Qualitätskontrolle von phänologischen Beobachtungen. Promet 33:2–6
Hunziker S, Brönnimann S, Calle J, Moreno I, Andrade M, Ticona L Lavado W, Huerta A (2018) Effects of undetected data quality issues on climatological analyses. Clim Past 14:1–20. https://doi.org/10.5194/cp-14-1-2018
Jamali S, Jönsson P, Eklundh L, Ardö J, Seaquist J (2015) Detecting changes in vegetation trends using time series segmentation. Remote Sens Environ 156:182–195. https://doi.org/10.1016/j.rse.2014.09.010
Keatley MR, Hudson IL (2012) Detecting change in an Australian flowering record: comparisons of linear regression and CUSUM change point analysis. Austral Ecol 37:825–835. https://doi.org/10.1111/j.1442-9993.2011.02344.x
Kuglitsch FG, Auchmann R, Bleisch R, Brönnimann S, Martius O, Stewart M (2012) Break detection of annual Swiss temperature series. J Geophys Res 117:D13105. https://doi.org/10.1029/2012JD017729
Lehmann D, Wyss E, Rutishauser T, Brönnimann S (2018) Citizen Science: Pflanzenphänologische Daten erfüllen wissenschaftliche Kriterien. Geographica Bernensia G93:1–4. https://doi.org/10.4480/GB2017.G93
Menzel A, Sparks TH, Estrella N et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976. https://doi.org/10.1111/j.1365-2486.2006.01193.x
MeteoSwiss (2018) National Climate Observing System (GCOS Switzerland). Update 2018, MeteoSwiss, Zurich. https://www.meteoswiss.admin.ch/content/dam/meteoswiss/en/Forschung-und-Zusammenarbeit/Internationale-Zusammenarbeit/GCOS/doc/NationalClimateObservingSystem_GCOSSwitzerland-Small.pdf. Accessed 11 August 2019
Pettitt AN (1979) A non-parametric approach to the change-point detection. Appl Stat 28:126–135
Reid PC, Hari RE, Beaugrand G, Livingstone DM, Marty C, Straile D, Barichivich J, Goberville E, Adrian R, Aono Y, Brown R, Foster J, Groisman P, Hélaouët P, Hsu HH, Kirby R, Knight J, Kraberg A, Li J, Lo TT, Myneni RB, North RP, Pounds JA, Sparks T, Stübi R, Tian Y, Wiltshire KH, Xiao D, Zhu Z (2016) Global impacts of the 1980s regime shift. Glob Chang Biol 22:682–703. https://doi.org/10.1111/gcb.13106.51
Rutishauser T, Luterbacher J, Defila C, Frank D, Wanner H (2008) Swiss spring plant phenology 2007: extremes, a multi-century perspective and changes in temperature sensitivity. Geophys Res Lett 35:L05703. https://doi.org/10.1029/2007GL032545
Rutishauser T, Schleip C, Sparks T (2009) Temperature sensitivity of Swiss and British plant phenology from 1753 to 1958. Clim Res 39:179–190. https://doi.org/10.3354/cr00810
Schleip C, Rutishauser T, Luterbacher J, Menzel A (2008) Time series modeling and central European temperature impact assessment of phenological records over the last 250 years. J Geophys Res 113:G04026. https://doi.org/10.1029/2007JG000646
Seiz G, Foppa N (2007) Nationales Klima-Beobachtungssystem (GCOS Schweiz). MeteoSwiss, Zurich. https://www.meteoschweiz.admin.ch/content/dam/meteoswiss/de/Ungebundene-Seiten/Publikationen/Berichte-GCOS-Schweiz/doc/2007seizfoppa.pdf. Accessed 11 August 2019
Studer S, Appenzeller C, Defila C (2005) Inter-annual variability and decadal trends in Alpine spring phenology: a multivariate analysis approach. Clim Chang 73:395–414. https://doi.org/10.1007/s10584-005-6886-z
Venema VKC, Mestre O, Aguilar E, Auer I, Guijarro JA, Domonkos P, Vertacnik G, Szentimrey T, Stepanek P, Zahradnicek P, Viarre J, Müller-Westermeier G, Lakatos M, Williams CN, Menne MJ, Lindau R, Rasol D, Rustemeier E, Kolokythas K, Marinova T, Andresen L, Acquaotta F, Fratianni S, Cheval S, Klancar M, Brunetti M, Gruber C, Prohom Duran M, Likso T, Esteban P, Brandsma T (2012) Benchmarking homogenization algorithms for monthly data. Clim Past 8:89–115. https://doi.org/10.5194/cp-8-89-2012
Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114:2970–2980. https://doi.org/10.1016/j.rse.2010.08.003
Wang XL, Wen QH, Wu Y (2007) Penalized maximal t test for detecting undocumented mean change in climate data series. J Appl Meteorol Climatol 46:916–931. https://doi.org/10.1175/JAM2504.1
Wang XL (2008) Penalized maximal F test for detecting undocumented mean shift without trend change. J Atmos Ocean Technol 25:368–384. https://doi.org/10.1175/2007JTECHA982.1
Willett KM, Williams C, Jolliffe IT, Lund R, Alexander LV, Brönnimann S, Vincent LA, Easterbrook S, Venema VKC, Berry D, Warren RE, Lopardo G, Auchmann R, Aguilar E, Menne MJ, Gallagher C, Hausfather Z, Thorarinsdottir T, Thorne PW (2014) A framework for benchmarking of homogenisation algorithm performance on the global scale. Geosci Instrum Method Data Syst 3:187–200. https://doi.org/10.5194/gi-3-187-2014
WMO (2016) The global observing system for climate: implementation needs. GCOS-200. World Meteorological Organization, Geneva
Funding
This work was funded by MeteoSwiss in the framework of GCOS Switzerland.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
ESM 1
(PDF 468 kb)
Rights and permissions
About this article
Cite this article
Brugnara, Y., Auchmann, R., Rutishauser, T. et al. Homogeneity assessment of phenological records from the Swiss Phenology Network. Int J Biometeorol 64, 71–81 (2020). https://doi.org/10.1007/s00484-019-01794-y
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00484-019-01794-y


