Skip to main content

Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock

Abstract

Livestock industries have an important role in ensuring global food security. This review discusses the importance of quantifying the heat stress response of ruminants, with an emphasis on identifying thermo-tolerant breeds. There are numerous heat stress prediction models that have attempted to quantify the response of ruminant livestock to hot climatic conditions. This review highlights the importance of investigating prediction models beyond the temperature-humidity index (THI). Furthermore, this review highlights the importance of incorporating other climatic variables when developing prediction indices to ensure the accurate prediction of heat stress in ruminants. Prediction models, particularly the heat load index (HLI) were developed to overcome the limitations of the THI by incorporating ambient temperature (AT), relative humidity (RH), solar radiation (SR) and wind speed (WS). Furthermore refinements to existing prediction models have been undertaken to account for the interactions between climatic variables and physiological traits of livestock. Specifically, studies have investigated the relationships between coat characteristics, respiration rate (RR), body temperature (BT), sweating rate, vasodilation, body weight (BW), body condition score (BCS), fatness and feed intake with climatic conditions. While advancements in prediction models have been occurring, there has also been substantial advancement in the methodologies used to quantify animal responses to heat stress. The most recent development in this field is the application of radio frequency identification (RFID) technology to record animal behaviour and various physiological responses. Rumen temperature measurements using rumen boluses and skin temperature recording using infrared thermography (IRT) are making inroads to redefine the quantification of the heat stress response of ruminants. Further, this review describes several advanced biotechnological tools that can be used to identify climate resilient breeds of ruminant livestock.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Afsal A, Bagath M, Sejian V, Krishnan G, Beena V, Bhatta R (2019) Effect of heat stress on HSP70 gene expression pattern in different vital organs of Malabari goats. Biol Rhythm Res:1–15. https://doi.org/10.1080/09291016.2019.1600270

  2. AIDC [Automatic identification and data collection] (2016) at the way back machine. http://www.mhi.org/fundamentals/automatic-identification

  3. Alameen AO, Abdelatif AM (2012) Metabolic and endocrine responses of crossbred dairy cows in relation to pregnancy and season under tropical conditions. American-Eurasian J Agric & Environ Sci 12(8):1065–1074

    CAS  Google Scholar 

  4. Aleena J, Pragna P, Archana PR, Sejian V, Bagath M, Krishnan G, Manimaran A, Beena V, Kurien EK, Varma G, Bhatta R (2016) Significance of metabolic response in livestock for adapting to heat stress challenges. Asian Australas J Anim Sci 10(4–5):224–234

    CAS  Google Scholar 

  5. Al-Kanaan A (2016) Heat stress response for physiological traits in dairy and dual-purpose cattle populations on phenotypic and genetic scales. PhD Thesis. The University of Kassel, Kassel

  6. AlZahal O, Kebreab E, France J, Froetschel M, McBride BW (2008) Ruminal temperature may aid in the detection of subacute ruminal acidosis. J Dairy Sci 91(1):202–207

    CAS  Article  Google Scholar 

  7. Amaratunga D, Cabrera J, Kovtun V (2007) Microarray learning with ABC. Biostatistics 9(1):128–136

    Article  Google Scholar 

  8. Archana PR, Aleena J, Prana P, Vidya MK, Abdul Niyas PA, Bagath M, Krishnan G, Manimaran A, Beena V, Kurien EK, Sejian V, Bhatta R (2017) Role of heat shock proteins in livestock adaptation to heat stress. J Dairy Vet Anim Res 5(1):1–8

    Google Scholar 

  9. Armstrong D (1994) Heat stress interaction with shade and cooling. J Dairy Sci 77(7):2044–2050

    CAS  Article  Google Scholar 

  10. Attaran M (2007) RFID: an enabler of supply chain operations. Supply Chain Manag 12(4):249–257

    Article  Google Scholar 

  11. Avendano-Reyes L, Fuquay JW, Moore RB, Liu Z, Clark BL, Vierhout C (2010) Relationship between accumulated heat stress during the dry period, body condition score, and reproduction parameters of Holstein cows in tropical conditions. Trop Anim Health Prod 42(2):265–273

    Article  Google Scholar 

  12. Baena MM, Tizioto PC, Meirelles SLC, de Almeida Regitano LC (2018) HSF1 and HSPA6 as functional candidate genes associated with heat tolerance in Angus cattle. R Bras Zootec 47:e20160390. https://doi.org/10.1590/rbz4720160390

    Article  Google Scholar 

  13. Baeta FC, Meador NF, Shanklin MD, Johnson HD (1987) Equivalent temperature index at temperatures above the thermo-neutral for lactating dairy cows. ASAE Paper No. 874015. Amer Soc Agric Engr (ASAE), St. Joseph

  14. Baumgard LH, Rhoads RP (2012) Ruminant Nutrition Symposium: ruminant production and metabolic responses to heat stress. J Anim Sci 90(6):1855–1865

    CAS  Article  Google Scholar 

  15. Benvenutti MA, Pavetti DR, Poppi DP, Gordon IJ, Cangiano CA (2016) Defoliation patterns and their implications for the management of vegetative tropical pastures to control intake and diet quality by cattle. Grass Forage Sci 71(3):424–436

    Article  Google Scholar 

  16. Berman A (2005) Estimates of heat stress relief needs for Holstein dairy cows. J Anim Sci 83(6):1377–1384

  17. Berry RB, Budhiraja R, Gottlieb DJ, Gozal D, Iber C, Kapur VK, Marcus CL, Mehra R, Parthasarathy S, Quan SF, Redline S (2012) Rules for scoring respiratory events in sleep: update of the 2007 AASM manual for the scoring of sleep and associated events. J Clin Sleep Med 8(05):597–619

    Google Scholar 

  18. Bewley JM, Einstein ME, Grott MW, Shutz MM (2008) Impact of intake water temperature on reticular temperatures of lactating dairy cows. J Dairy Sci 91:3880–3887

    CAS  Article  Google Scholar 

  19. Blackshaw JK, Blackshaw AW (1994) Heat stress in cattle and the effect of shade on production and behaviour: a review. Aust J Exp Agri 34(2):285–295

    Article  Google Scholar 

  20. Bohmanova J, Misztal I, Cole JB (2007) Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci 90:1947–1956

    CAS  Article  Google Scholar 

  21. Bond TE, Kelly CF, Morrison SR, Periera N (1967) Solar, atmospheric, and terrestrial radiation received by shaded and unshaded animals. Trans Am Soc Agric Eng 10(5):622–627

    Article  Google Scholar 

  22. Braun U, Trösch L, Nydegger F, Hässig M (2013) Evaluation of eating and rumination behaviour in cows using a noseband pressure sensor. BMC Vet Res 9(1):164

  23. Brosh A, Goldberg S, Asher A, Ben Yosef A, Yehuda Y, Gorelik H, Malanud R, Gat A (2018) Cows collars and herd management system for remote managing of grazing beef herd. In: International symposium on the nutrition of herbivores, Clermont Ferrand, pp 432

  24. Brown-Brandl TM, Eigenberg RA, Nienaber JA (2006) Heat stress risk factors of feedlot heifers. Livest Sci 105(1–3):57–68

    Article  Google Scholar 

  25. Bryant JR, Matthews LR, Davys J (2010) Development and application of a thermal stress model. In: Proceedings of the 4th Australasian Dairy Science Symposium

  26. Buerkert A, Schlecht E (2009) Performance of three GPS collars to monitor goats’ grazing itineraries on mountain pastures. Comput Electron Agric 65(1):85–92

    Article  Google Scholar 

  27. Buffington DE, Collazo-Arocho A, Canton GH, Pitt D, Thatcher WW, Collier RJ (1981) Black globe-humidity index (BGHI) as comfort equation for dairy cows. Trans ASAE 24(3):711–714

    Article  Google Scholar 

  28. Cardiopulmonary transmitter for large animals (2016) www.datasci.com

  29. Champion RA, Rutter SM, Penning PD (1997) An automatic system to monitor lying, standing and walking behaviour of grazing animals. Appl Anim Behav Sci 54(4):291–305

    Article  Google Scholar 

  30. Cole JN, Barnett TC, Nizet V, Walker MJ (2011) Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9(10):724–736

    CAS  Article  Google Scholar 

  31. Collier RJ, Collier JL, Rhoads RP, Baumgard LH (2008) Invited review: genes involved in the bovine heat stress response. J Dairy Sci 91(2):445–454

    CAS  Article  Google Scholar 

  32. Contreras-Jodar A, Salama AA, Hamzaoui S, Vailati-Riboni M, Caja G, Loor JJ (2018) Effects of chronic heat stress on lactational performance and the transcriptomic profile of blood cells in lactating dairy goats. J Dairy Res 85(4):423–430

    CAS  Article  Google Scholar 

  33. Culmer MD (2012) Detection of ovulation in dairy cows by twice-daily passive monitoring of reticulo-rumen temperature. MSc Thesis. Dalhousie University Halifax, Nova Scotia

  34. Dangi SS, Gupta M, Dangi SK, Chouhan VS, Maurya VP, Kumar P, Singh G, Sarkar M (2015) Expression of HSPs: an adaptive mechanism during long-term heat stress in goats (Capra hircus). Int J Biometeorol 59(8):1095–1106

    Article  Google Scholar 

  35. Das R, Sailo L, Verma N, Bharti P, Saikia J (2016) Impact of heat stress on health and performance of dairy animals: a review. Vet World 9(3):260–268

    CAS  Article  Google Scholar 

  36. Da Silva RG, Maia AS, de Macedo Costa LL (2015) Index of thermal stress for cows (ITSC) under high solar radiation in tropical environments. Int J Biometeorol 59(5):551–559

    Article  Google Scholar 

  37. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Gent 12(7):499–510

    CAS  Article  Google Scholar 

  38. DeShazer JA, Hahn GL, Xin H (2009) Basic principles of the thermal environment and livestock energetics. In: Livestock energetics and thermal environment management 2009, American Society of Agricultural and Biological Engineers

  39. DeVoe KR, Hoff SJ, Ramirez BC, Baumgard LH (2017) Climate dependent heat stress mitigation modeling for dairy cattle housing. In: 2017 ASABE Annual International Meeting, American Society of Agricultural and Biological Engineers

  40. DeVries TJ, Von Keyserlingk MA, Weary DM, Beauchemin KA (2003) Validation of a system for monitoring feeding behavior of dairy cows. J Dairy Sci 86(11):3571–3574

    CAS  Article  Google Scholar 

  41. Dikmen S, Cole JB, Null DJ, Hansen PJ (2013) Genome-wide association mapping for identification of quantitative trait loci for rectal temperature during heat stress in Holstein cattle. PLoS One 8(7):e69202

    CAS  Article  Google Scholar 

  42. Dunisławska A, Łachmańska J, Sławińska A, Siwek M (2017) Next generation sequencing in animal science—a review. Anim Sci Paper Rep 1(3):35

    Google Scholar 

  43. DVM (2013) Automatic cow temperature monitoring WWW.DVMSystems.com

  44. Eigenberg RA, Brown-Brandl TM, Nienaber JA, Hahn GL (2005) Dynamic response indicators of heat stress in shaded and non-shaded feedlot cattle, part 2: predictive relationships. Biosyst Eng 91(1):111–118

    Article  Google Scholar 

  45. Eigenberg RA, Hahn GL, Nienaber JA, Brown-Brandl TM, Spiers DE (2000) Development of a new respiration rate monitor for cattle. Trans ASAE 43(3):723–728

    Article  Google Scholar 

  46. Esmay ML (1969) Principles of animal environment. Principles Animal Environment

  47. Etim NN, Williams ME, Evans EI, Offiong EE (2013) Physiological and behavioural responses of farm animals to stress: implications to animal productivity. Am J Adv Agric Res 1:53–61

    Google Scholar 

  48. FAO (Food and Agriculture Organization of the United Nations) (2013) Climate-smart agriculture: sourcebook. FAO, Rome http://www.fao.org/3/a-i3325e.pdf

    Google Scholar 

  49. Ferguson D, Fisher A, White B, Casey R, Mayer B (2008) Review of the livestock export heat stress risk assessment model (HotStuff). Meat and Livestock Australia, North Sydney, NSW

    Google Scholar 

  50. Fox DG, Tylutki TP (1998) Accounting for the effects of environment on the nutrient requirements of dairy cattle. J Dairy Sci 81(11):3085–3095

    CAS  Article  Google Scholar 

  51. Garner JB, Douglas ML, Williams SRO, Wales WJ, Marett LC, Nguyen TTT, Reich CM, Hayes BJ (2016) Genomic selection improves heat tolerance in dairy cattle. Sci Rep 6:34114. https://doi.org/10.1038/srep3411

    CAS  Article  Google Scholar 

  52. Garnett T (2009) Livestock-related greenhouse gas emissions: impacts and options for policymakers. Environ Sci Pol 12(4):491–503

    CAS  Article  Google Scholar 

  53. Gaughan JB, Goopy J, Spark J (2003) Excessive heat load index for feedlote cattle. Final report prepared for Meat and Livestock Australia Ltd, Australia, https://data.globalchange.gov

  54. Gaughan JB, Mader TL, Holt SM, Lisle A (2008) A new heat load index for feedlot cattle. J Anim Sci 86(1):226–234

    CAS  Article  Google Scholar 

  55. Gebremedhin KG (1987) A model of sensible heat transfer across the boundary layer of animal hair coat. J Therm Biol 12(1):5–10

    Article  Google Scholar 

  56. Gebremedhin KG, Wu BX (2003) Characterization of flow field in a ventilated space and simulation of heat exchange between cows and their environment. J Therm Biol 28(4):301–319

    Article  Google Scholar 

  57. Gebremedhin KG, Wu B (2001) A model of evaporative cooling of wet skin surface and fur layer. J Therm Biol 26(6):537–545

    Article  Google Scholar 

  58. Gupta M, Kumar S, Dangi SS, Jangir BL (2013) Physiological, biochemical and molecular responses to thermal stress in goats. Int J Livest Res 3(2):27–38

    Article  Google Scholar 

  59. Guzman F, Almerao MP, Korbes AP, Loss-Morais G, Margis R (2012) Identification of microRNAs from Eugenia uniflora by high throughput sequencing and bioinformatics analysis. PLoS One 7(11):e49811

    CAS  Article  Google Scholar 

  60. Hahn GL (1985) Management and housing of farm animals in hot environments. FAO

  61. Hahn MB, Riederer AM, Foster SO (2009a) The Livelihood Vulnerability Index: a pragmatic approach to assessing risks from climate variability and change—a case study in Mozambique. Glob Environ Chang 19:74–88

    Article  Google Scholar 

  62. Hahn GL, Gaughan JB, Mader TL, Eigenberg RA (2009b) Thermal indices and their applications for livestock environments. In: DeShazer JA (ed) Livestock energetics and thermal environmental management. American Society of Agricultural and Biological Engineers, St. Joseph, pp 113–130

    Chapter  Google Scholar 

  63. Handcock RN, Swain DL, Bishop-Hurley GJ, Patison KP, Wark T, Valencia P, Corke P, O’Neill CJ (2009) Monitoring animal behaviour and environmental interactions using wireless sensor networks, GPS collars and satellite remote sensing. Sensors 9(5):3586–3603

    Article  Google Scholar 

  64. Haque N, Ludri A, Hossain SA, Ashutosh M (2013) Impact on hematological parameters in young and adult Murrah buffaloes exposed to acute heat stress. Buffalo Bull 32(4):321–326

    Google Scholar 

  65. Herbut P, Angrecka S, Walcza J (2018) Environmental parameters to assessing of heat stress in dairy cattle—a review. Int J Biometeorol 62:2089–2097

    Article  Google Scholar 

  66. Hiendleder S, Bauersachs S, Boulesteix A, Blum H, Arnold GJ, Frohlich T, Wolf E (2005) Functional genomics: tools for improving farm animal health and welfare. Rev Sci Tech Off Int Epiz 24(1):355–377

    CAS  Article  Google Scholar 

  67. Hurst P, Termine P, Karl M (2005) Agricultural workers and their contribution to sustainable agriculture and rural development. FAO, Rome ftp://ftp.fao.org/docrep/fao/008/af164e/af164e00.pdf

    Google Scholar 

  68. Indu S, Pareek A (2015) A review: growth and physiological adaptability of sheep to heat stress under semi-arid environment. Int J Emerg Trends Sci Technol. https://doi.org/10.18535/ijetst/v2i9.09

  69. IPCC [Intergovernmental Panel on Climate Change] (2013) Climate change: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bexd V, Midgley PM (eds) Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge 1535 pp

    Google Scholar 

  70. Jenko J (2012) Heat stress risk, alert system for dairy cattle in Slovenia. Acta Agr Slov 3:291–294

  71. Kapila N, Sharma A, Kishore A, Sodhi M, Tripathi PK, Mohanty AK, Mukesh M (2016) Impact of heat stress on cellular and transcriptional adaptation of mammary epithelial cells in riverine buffalo (Bubalus bubalis). PLoS One 11(9):e0157237. https://doi.org/10.1371/journal.pone.0157237

    CAS  Article  Google Scholar 

  72. Kim ES, Elbeltagy AR, Aboul-Naga AM, Rischkowsky B, Sayre B, Mwacharo JM, Rothschild MF (2016) Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity (Edinb) 116(3):255–264

    CAS  Article  Google Scholar 

  73. Knížková I, Kunc P, Gürdil GA, Pinar Y, Selvi KC (2007) Applications of infrared thermography in animal production. J Fac Agric 22(3):329–336

    Google Scholar 

  74. Kou H, Zhao Y, Ren K, Chen X, Lu Y, Wang D (2017) Automated measurement of cattle surface temperature and its correlation with rectal temperature. PLoS One 12(4):e0175377

    Article  CAS  Google Scholar 

  75. Laca EA (2009) Precision livestock production: tools and concepts. R Bras Zootec 38(SPE):123–132

    Article  Google Scholar 

  76. Laca EA, WallisDeVries MF (2000) Acoustic measurement of intake and grazing behaviour of cattle. Grass Forage Sci 55(2):97–104

    Article  Google Scholar 

  77. LCI (1970) Patterns of transit losses. Livestock Conservation, Inc, Omaha

    Google Scholar 

  78. Lee DH (1980) Seventy-five years of searching for a heat index. Environ Res 22(2):331–356

    CAS  Article  Google Scholar 

  79. Lees JC, Lees AM, Gaughan JB (2018a) Developing a heat load index for lactating dairy cows. Anim Prod Sci 58:1387. https://doi.org/10.1071/AN17776

    Article  Google Scholar 

  80. Lees AM, Lees JC, Lisle AT, Sullivan ML, Gaughan JB (2018b) Effect of heat stress on rumen temperature of three breeds of cattle. Int J Biometeorol 62(2):207–215

    CAS  Article  Google Scholar 

  81. Lees AM, Lees JC, Sejian V, Wallage AL, Gaughan JB (2018c) Using infrared thermography as an in situ measure of core body temperature in lot-fed Angus steers. Int J Biometeorol 62(1):3–8

    Article  Google Scholar 

  82. Li Q, Han J, Du F, Ju Z, Huang J, Wang J, Li R, Wang C, Zhong J (2010) Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Mol Biol Rep 38(4):2657–2663

    Article  CAS  Google Scholar 

  83. Li B, Dong C, Li P, Ren Z, Wang H, Yu F, Ning C, Liu K, Wei W, Huang R, Chen J (2016) Identification of candidate genes associated with porcine meat color traits by genome-wide transcriptome analysis. Sci Rep 6:35224

    CAS  Article  Google Scholar 

  84. Lin X, Pacheco D, Kemp PD, Waghorn GC, Cosgrove GP (2010) Evaluation of sensors for monitoring rumen pH, temperature and pressure. In: Proceedings of the New Zealand Society of Animal Production, New Zealand Society of Animal Production

  85. Liu Y, Tu Y, Zhang M, Ji G, Wang K, Shan Y, Ju X, Zhang D, Shu J, Zou J (2018) Identification of molecular pathways and candidate genes associated with cocks’ comb size trait by genome-wide transcriptome analysis. Sci Rep 8(1):2015

    Article  CAS  Google Scholar 

  86. Mader TL, Johnson LJ, Gaughan JB (2010) A comprehensive index for assessing environmental stress in animals. J Anim Sci 88(6):2153–2165

    CAS  Article  Google Scholar 

  87. Mader TL, Davis MS, Brown-Brandl T (2006) Environmental factors influencing heat stress in feedlot cattle. J Anim Sci 84:712–719

    CAS  Article  Google Scholar 

  88. Magalhaes AF, de Camargo GM, Junior GA, Gordo DG, Tonussi RL, Costa RB, Espigolan R, Rafael MD, Bresolin T, de Andrade WB, Takada L (2016) Genome-wide association study of meat quality traits in Nellore cattle. PLoS One 11(6):e0157845

    Article  CAS  Google Scholar 

  89. Maia AS, Gebremedhin KG, Nascimento ST, Carvalho MD, Simão BR, Camerro LZ, Neto MC (2014) Development of facial masks for indirect calorimetric studies for livestock. In: American Society of Agricultural and Biological Engineers, Montreal, Quebec, Canada

  90. Malone JH, Oliver B (2011) Microarrays, deep sequencing development of facial masks for indirect calorimetric studies for livestock and the true measure of the transcriptome. BMC Biol 9(1):34

    CAS  Article  Google Scholar 

  91. Manjari R, Yadav M, Ramesh K, Uniyal S, Rastogi SK, Sejian V, Hyder I (2015) HSP70 as a marker of heat and humidity stress in Tarai buffalo. Trop Anim Health Prod 47(1):111–116

    Article  Google Scholar 

  92. Marai IF, El-Darawany AA, Fadiel A, Abdel-Hafez MA (2007) Physiological traits as affected by heat stress in sheep—a review. Small Rumin Res 71(1–3):1–2

    Article  Google Scholar 

  93. Martello LS, e Silva SD, da Costa Gomes R, da Silva Corte RR, Leme PR (2016) Infrared thermography as a tool to evaluate body surface temperature and its relationship with feed efficiency in Bosindicus cattle in tropical conditions. Int J Biometeorol 60(1):173–181

    Article  Google Scholar 

  94. McArthur AJ (1987) Thermal interaction between animal and microclimate: a comprehensive model. J Theor Biol 126(2):203–238

    CAS  Article  Google Scholar 

  95. McGovern RE, Bruce JM (2000) AP—animal production technology. J Agric Eng Res 77(1):81–92

    Article  Google Scholar 

  96. McManus CM, Paludo GR, Louvandini H, Gugel R, Sasaki LCB, Paiva SR (2009) Heat tolerance in Brazilian sheep: physiological and blood parameters. Trop Anim Health Prod 41(1):95–101

    Article  Google Scholar 

  97. Mendes ED, Carstens GE, Tedeschi LO, Pinchak WE, Friend TH (2011) Validation of a system for monitoring feeding behavior in beef cattle. J Anim Sci 89(9):2904–2910

    CAS  Article  Google Scholar 

  98. Milan HF, Maia AS, Gebremedhin KG (2016) Device for measuring respiration rate of cattle under field conditions. J Anim Sci 94(12):5434–5438

    CAS  Article  Google Scholar 

  99. Miller MB, Tang YW (2009) Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22(4):611–633

    CAS  Article  Google Scholar 

  100. Mondaca MR, Choi CY (2016) An evaluation of simplifying assumptions in dairy cow computational fluid dynamics models. Trans ASABE 59(6):1575–1784

    Article  Google Scholar 

  101. Montanholi YR, Odongo NE, Swanson KC, Schenke FS, McBride BW, Miller SP (2008) Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). J Therm Biol 33(8):468–475

    CAS  Article  Google Scholar 

  102. Morton JM, Tranter WP, Mayer DG, Jonsson NN (2007) Effects of environmental heat on conception rates in lactating dairy cows: critical periods of exposure. J Dairy Sci 90(5):2271–2278

    CAS  Article  Google Scholar 

  103. Naha BC, Prasad A, Sailo L, Chaudhary R, Prakash O (2016) Concept of genome wide association studies and its progress in livestock. International Journal of Science and Nature 7(1):39–42

    Google Scholar 

  104. Nguyen TTT, Bowman PJ, Haile-Mariam M, Pryce JE, Hayes BJ (2016) Genomic selection for tolerance to heat stress in Australian dairy cattle. J Dairy Sci 99(4):2849–2862

    CAS  Article  Google Scholar 

  105. Nyamushamba GB, Mapiye C, Tada O, Halimani TE, Muchenje V (2017) Conservation of indigenous cattle genetic resources in Southern Africa’s smallholder areas: turning threats into opportunities—a review. Asian-Aust J Anim Sci 30(5):603–621

    CAS  Article  Google Scholar 

  106. Nydegger F, Gygax L, Egli W (2010) Automatic measurement of rumination and feeding activity using a pressure sensor. In: International Conference on Agricultural Engineering-AgEng 2010: towards environmental technologies, Clermont-Ferrand, France

  107. Ortiz XA, Smith JF, Rojano F, Choi CY, Bruer J, Steele T, Schuring N, Allen J, Collier RJ (2015) Evaluation of conductive cooling of lactating dairy cows under controlled environmental conditions. J Dairy Sci 98(3):1759–1771

    CAS  Article  Google Scholar 

  108. Pahl C, Hartung E, Grothmann A, Mahlkow-Nerge K, Haeussermann A (2016) Suitability of feeding and chewing time for estimation of feed intake in dairy cows. Animal 10(9):1507–1512

    CAS  Article  Google Scholar 

  109. Pragna P, Sejian V, Soren NM, Bagath M, Krishnan G, Beena V, Devi PI, Bhatta R (2018) Summer season induced rhythmic alterations in metabolic activities to adapt to heat stress in three indigenous (Osmanabadi, Malabari and Salem Black) goat breeds. Biol Rhythm Res 49(4):551–565

    CAS  Article  Google Scholar 

  110. Rashamol VP, Sejian V, Bagath M, Krishnan G, Archana PR, Bhatta R (2018) Physiological adaptability of livestock to heat stress: an updated review. J Anim Behav Biometeorol 6(3):62–71

    Article  Google Scholar 

  111. Ratnakaran AP, Sejian V, Jose VS, Vaswani S, Bagath M, Krishnan G, Beena V, Indira Devi P, Varma G, Bhatta R (2017) Behavioural responses to livestock adaptation to heat stress challenges. Asian Australas J Anim Sci 11(1):1–13

    Google Scholar 

  112. Reed JA (2015) Biometric growth and behavior of calf-fed Holstein steers fed in confinement. M.S. Thesis. West Texas A&M University, Canyon

  113. Reynolds C, Crompton L, Mills J (2010) Livestock and climate change impacts in the developing world. Outlook Agric 39(4):245–248

    Article  Google Scholar 

  114. Richeson JT, Lawrence TE, White BJ (2018) Using advanced technologies to quantify beef cattle behavior. Trans Anim Sci 2(2):223–229

    Article  Google Scholar 

  115. Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA (2017) Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag 16:145–163

    Article  Google Scholar 

  116. Rolf MM, McKay SD, McClure MC, Decker JE, Taxis TM, Chapple RH, Vasco DA, Gregg SJ, Kim JW, Schnabel RD, Taylor JF (2010) How the next generation of genetic technologies will impact beef cattle selection. In: Proceedings of the Beef Improvement Federations 42nd Annual Research Symposium and Annual Meeting, Columbia, MO, USA, pp. 46–56

  117. Rose-Dye TK, Burciaga-Robles LO, Krehbiel CR, Step DL, Fulton RW, Confer AW, Richards CJ (2011) Rumen temperature change monitored with remote rumen temperature boluses after challenges with bovine viral diarrhea virus and Mannheimia haemolytica. J Anim Sci 89(4):1193–1200

    CAS  Article  Google Scholar 

  118. Rosegrant MW, Fernandez M, Sinha A (2009) Looking into the future for agriculture and AKST. In: McIntyre BD, Herren HR, Wakhungu J, Watson RT (eds) International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Agriculture at a crossroads. Island Press, Washington, DC, pp 307–376

    Google Scholar 

  119. Ruiz-Garcia L, Lunadei L (2011) The role of RFID in agriculture: applications, limitations and challenges. Comput Electron Agric 79(1):42–50

    Article  Google Scholar 

  120. Rutter SM (2007) The integration of GPS, vegetation mapping and GIS in ecological and behavioural studies. Rev Bras Zootec 36:63–70

    Article  Google Scholar 

  121. Sailo L, Gupta LD, Verma A, Singh A, Chaudhari MV, Das R, Upadhyay RC, Goswami J (2015) Single nucleotide polymorphism in HSP70 AB1 gene and its association with thermo-tolerance in Jersey crossbred cows. Anim Sci Rep 9(2):43–49

    Google Scholar 

  122. Sajjanar B, Deb R, Singh U, Kumar S, Brahmane M, Nirmale A, Bal SK, Minhas PS (2015) Identification of SNP in HSP90AB1 and its association with the relative thermotolerance and milk production traits in Indian dairy cattle. Anim Biotechnol 26:45–50

    CAS  Article  Google Scholar 

  123. Scherer A, Christensen GB (2016) Concepts and relevance of genome-wide association studies. Sci Prog 99(1):59–67

    CAS  Article  Google Scholar 

  124. Sejian V, Bhatta R, Gaughan JB, Dunshea FR, Lacetera N (2018) Adaptation of animals to heat stress. Animal 24:1–4

    Google Scholar 

  125. Sejian V, Bagath M, Krishnan G, Rashamol VP, Pragna P, Devaraj C, Bhatta R (2019) Genes for resilience to heat stress in small ruminants: a review. Small Rumin Res 173:42–53

    Article  Google Scholar 

  126. Shilja S, Sejian V, Bagath M, Manjunathareddy GB, Kurien EK, Varma G, Bhatta R (2017) Summer season related heat and nutritional stresses on the adaptive capability of goats based on blood biochemical response and hepatic HSP70 gene expression. Biol Rhythm Res 48(1):65–83

    Article  CAS  Google Scholar 

  127. Silanikove N, Koluman N (2015) Impact of climate change on the dairy industry in temperate zones: predications on the overall negative impact and on the positive role of dairy goats in adaptation to earth warming. Small Rumin Res 123(1):27–34

    Article  Google Scholar 

  128. Singh KM, Singh S, Ganguly I, Ganguly A, Nachiappan RK, Chopra A, Narula HK (2016) Evaluation of Indian sheep breeds of arid zone under heat stress condition. Small Rumin Res 141:113–117

    Article  Google Scholar 

  129. Smart Neck Collar Tags for Cows (2016) https://www.afimilk.com/afiblog/smart-neck-collar-tags-cows-provides-data

  130. Srikanth K, Lee E, Kwan A, Lim Y, Lee J, Jang G, Chung H (2017) Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress. Int J Biometeorol 61(11):1993–2008

    Article  Google Scholar 

  131. St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86(1):E52–E77

    Article  Google Scholar 

  132. Swain DL, Friend MA, Bishop-Hurley GJ, Handcock RN, Wark T (2011) Tracking livestock using global positioning systems—are we still lost? Anim Prod Sci 51(3):167–175

    Article  Google Scholar 

  133. Swedherg C (2017) RFID brings intelligence and treatment to livestock production. RFID Journal, http://www.rfidjournal.com/articles/view?15520

  134. Thom EC (1959) The discomfort index. Weatherwise 12:57–59

    Article  Google Scholar 

  135. Thompson VA, Barioni LG, Oltjen JW, Rumsey T, Fadel JG, Sainz RD (2011a) Development of a heat balance model for cattle under hot conditions. In: Sauvant D, Van Milgen J, Faverdin P, Friggens N (eds) Modelling nutrient digestion and utilisation in farm animals. Wageningen Academic Publishers, Wageningen, pp 243–251

    Chapter  Google Scholar 

  136. Thompson VA, Fadel JG, Sainz RD (2011b) Meta-analysis to predict sweating and respiration rates for Bos indicus, Bos taurus, and their crossbreds. J Anim Sci 89(12):3973–3982

    CAS  Article  Google Scholar 

  137. Thompson VA, Barioni LG, Rumsey TR, Fadel JG, Sainz RD (2014) The development of a dynamic, mechanistic, thermal balance model for Bos indicus and Bos taurus. J Agric Sci 152(03):464–482

  138. UN (United Nations) (2013) World population projected to reach 9.6 billion by 2050. United Nations Department of Economic and Social Affairs. <http://www.un.org/en/development/desa/news/population/un-report-world-population-projected-to-reach-9-6-billion-by-2050.html>

  139. Ungar ED, Rutter SM (2006) Classifying cattle jaw movements: comparing IGER behaviour recorder and acoustic techniques. Appl Anim Behav Sci 98(1–2):11–27

    Article  Google Scholar 

  140. Usamentiaga R, Venegas P, Guerediaga J, Vega L, Molleda J, Bulnes FG (2014) Infrared thermography for temperature measurement and non-destructive testing. Sensors 14(7):12305–12348

    Article  Google Scholar 

  141. Wang X, Gao H, Gebremedhin KG, Bjerg BS, Os JV, Tucker CB, Zhang G (2018) A predictive model of equivalent temperature index for dairy cattle (ETIC). J Therm Biol 76:165–170

    Article  Google Scholar 

  142. Wright IA, Tarawali S, Blümmel M, Gerard B, Teufel N, Herrero M (2012) Integrating crops and livestock in subtropical agricultural systems. J Sci Food Agric 92(5):1010–1015

    CAS  Article  Google Scholar 

  143. Zhang H, Wang Z, Wang S, Li H (2012) Progress of genome wide association study in domestic animals. J Anim Sci Biotechnol 3(1):26

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. Sejian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rashamol, V.P., Sejian, V., Pragna, P. et al. Prediction models, assessment methodologies and biotechnological tools to quantify heat stress response in ruminant livestock. Int J Biometeorol 63, 1265–1281 (2019). https://doi.org/10.1007/s00484-019-01735-9

Download citation

Keywords

  • Climate change
  • Heat stress
  • Heat load index
  • Infrared thermography
  • Prediction models
  • Radio frequency identification
  • Thermo-tolerance