Advertisement

Assessment of neural networks and time series analysis to forecast airborne Parietaria pollen presence in the Atlantic coastal regions

  • J. A. Valencia
  • G. Astray
  • M. Fernández-González
  • M. J. Aira
  • F. J. Rodríguez-RajoEmail author
Original Paper

Abstract

Pollen forecasting models are a useful tool with which to predict episodes of type I allergenic risk and other environmental or biological processes. Parietaria is a wind-pollinated perennial herb that is responsible for many cases of severe pollinosis due to its high pollen production, the long persistence of the pollen grains in the atmosphere and the abundant presence of allergens in their cytoplasm and walls. The aim of this paper is to develop artificial neural networks (ANNs) to predict airborne Parietaria pollen concentrations in the northwestern part of Spain using a 19-year data set (1999–2017). The results show a significant increase in the length of time Parietaria pollen is in the air, as well as significant increases in the annual Parietaria pollen integral and mean daily maximum pollen value in the year. The Neural models show the ability to forecast airborne Parietaria pollen concentrations 1, 2, and 3 days ahead. A developed model with five input variables used to predict concentrations of airborne Parietaria pollen 1 day ahead shows determination coefficients between 0.618 and 0.652.

Keywords

Parietaria pollen Artificial neural networks Modeling Time series analysis 

Notes

Funding information

This study was supported by the contract CO-0082-16 on behalf of Xunta of Galicia, Consellería de Sanidade (Dirección Xeral Salud Pública). Astray G. received the postdoctoral grant (Plan 12C), POS-A/2012/164 and the postdoctoral grant B, POS-B/2016/001 which is from the Xunta de Galicia, Consellería de Cultura, Educación e Ordenación Universitaria.

References

  1. Agencia Estatal de Meterología – AEMET (2012) Valores climatológicas normales. Ourense. http://www.aemet.es/es/serviciosclimaticos/datosclimatologicos/valoresclimatologicos?l=1690A&k=gal. Accessed 10 Feb 2018
  2. Akintunde AM, Ajala SO, Betiku E (2015) Optimization of Bauhinia monandra seed oil extraction via artificial neural network and response surface methodology: a potential biofuel candidate. Ind Crop Prod 67:387–394Google Scholar
  3. Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30(1):269–275Google Scholar
  4. Astray G, Rodriguez-Rajo FJ, Ferreiro-Lage A, Fernandez-Gonzalez M, Jato V, Mejuto J (2010) The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores. J Environ Monitor 12(11):2145–2152Google Scholar
  5. Astray G, Gullón B, Labidi J, Gullón P (2016a) Comparison between developed models using response surface methodology (RSM) and artificial neural networks (ANNs) with the purpose to optimize oligosaccharide mixtures production from sugar beet pulp. Ind Crop Prod 92:290–299Google Scholar
  6. Astray G, Fernández-González M, Rodríguez-Rajo FJ, López D, Mejuto JC (2016b) Airborne Castanea pollen forecasting model for ecological and allergological implementation. Sci Total Environ 548–549:110–121Google Scholar
  7. Asturias JA, Gómez-Bayón N, Eseverri JL, Martínez A (2003) Par j1 and par j2, the major allergens from Parietaria judaica pollen, have similar immunoglobulin E epitopes. Clin Exp Allergy 33(4):518–524Google Scholar
  8. Aznarte JL, Benítez Sánchez JM, Lugilde D, de Linares C, de la Guardia CD, Sánchez F (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32(4):1218–1225Google Scholar
  9. Bas D, Boyaci IH (2007) Modeling and optimization II: comparison of estimation capabilities of response surface methodology with artificial neural networks in a biochemical reaction. J Food Eng 78(3):846–854Google Scholar
  10. Beggs PJ (2004) Impacts of climate change on aeroallergens: Past and future. Clin Exp Allergy 34(10):1507–1513Google Scholar
  11. Belmonte J, Roure JM, March X (1998) Aerobiology of Vigo, North-Western Spain: atmospheric pollen spectrum and annual dynamics of the most important taxa, and their clinical importance for allergy. Aerobiologia 14(2–3):155–163Google Scholar
  12. Bousquet J, Hewitt B, Guerin B, Dhivert H, Michel FB (1986) Allergy in the Mediterranean area. II: cross-allergenicity among Urticaceae pollens (Parietaria and Urtica). Clin Exp Allergy 16(1):57–64Google Scholar
  13. Burbach GJ, Heinzerling LM, Edenharter G, Bachert C, Bindslev-Jensen C, Bonini S, Bousquet J, Bousquet-Rouanet L, Bousquet PJ, Bresciani M, Bruno A, Canonica GW, Darsow U, Demoly P, Durham S, Fokkens WJ, Giavi S, Gjomarkaj M, Gramiccioni C, Haahtela T, Kowalski ML, Magyar P, Muraközi G, Orosz M, Papadopoulos NG, Röhnelt C, Stingl G, Todo-Bom A, von Mutius E, Wiesner A, Wöhrl S, Zuberbier T (2009) GA(2)LEN skin test study II: clinical relevance of inhalant allergen sensitizations in Europe. Allergy 64(10):1507–1515Google Scholar
  14. Castellano-Méndez M, Aira MJ, Iglesias I, Jato V, González-Manteiga W (2005) Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. Int J Biometeorol 49(5):310–316Google Scholar
  15. Costa MA, Colombo P, Izzo V, Kennedy H, Venturella S, Cocchiara R, Geraci D (1994) cDNA cloning, expression and primary structure of par j1, a major allergen of Parietaria judaica pollen. FEBS Lett 341(2–3):182–186Google Scholar
  16. Cotos-Yañez T, Rodríguez-Rajo FJ, Jato V (2004) Short-term prediction of Betula airborne pollen concentration in Vigo (NW Spain) using logistic additive models and partially linear models. Int J Biometeorol 48:179–185Google Scholar
  17. D’Amato G (2002) Urban air pollution and respiratory allergy. Monaldi Arch Chest Dis 57(2):136–140Google Scholar
  18. D’Amato G, Labetalol G (1989) Allergenic pollens in the southern Mediterranean area. J Allergy Clin Immun 83(1):116–122Google Scholar
  19. D’Amato G, Ruffilli A, Sacerdoti G, Bonini S (1992) Parietaria pollinosis: a review. Allergy 47(5):443–449Google Scholar
  20. Dahl A, Galán C, Hajkova L, Pauling A, Sikoparija B, Smith M, Vokou D (2013) The onset, course and intensity of the pollen season allergenic pollen: a review of the production, release, distribution and health impacts. Springer, Amsterdam, pp 29–70Google Scholar
  21. Desai KM, Survase SA, Saudagar PS, Lele SS, Singhal RS (2008) Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization: case study of fermentative production of scleroglucan. Biochem Eng J 41(3):266–273Google Scholar
  22. Erdtman G (1952) Pollen morphology and plant taxonomy angiosperms (an introduction to palynology). In Almqvist and Wiksells (Ed), (pp 445–446) Stockholm, SwedenGoogle Scholar
  23. Ford SA, Baldo BA, Geraci D, Bass D (1986) Identification of Parietaria judaica pollen allergens. Int Arch Allergy Appl Immunol 79(2):120–126Google Scholar
  24. Fotiou C, Damialis A, Krigas N, Halley JM, Vokou D (2011) Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: impacts of environmental factors. Int J Biometeorol 55(1):35–50Google Scholar
  25. Fuhrmann CM, Sugg MM, Konrad CE (2016) Airborne pollen characteristics and the influence of temperature and precipitation in Raleigh, North Carolina, USA (1999–2012). Aerobiologia 32(4):683–696Google Scholar
  26. Galán C, Alcázar P, Cariñanos P, Garcia H, Domínguez-Vilches E (2000) Meteorological factors affecting daily urticaceae pollen counts in Southwest Spain. Int J Biometeorol 43(4):191–195Google Scholar
  27. Galán C, Cariñanos P, Alcázar P, Domínguez E (2007) Spanish aerobiology network: management and quality manual. University of Córdoba, CórdobaGoogle Scholar
  28. Galán C, Ariatti A, Bonini M, Clot B, Crouzy B, Dahl A, Fernandez-González D, Frenguelli G, Gehrig R, Isard S, Levetin E, Li DW, Mandrioli P, Rogers CA, Thibaudon M, Sauliene I, Skjoth C, Smith M, Sofiev M (2017) Recommended terminology for aerobiological studies. Aerobiologia 33:293–295Google Scholar
  29. García-Mozo H, Galán C, Jato V, Belmonte J, Díaz De La Guardia C, Fernández D, Domínguez-Vilches E (2006) Quercus pollen season dynamics in the Iberian Peninsula: response to meteorological parameters and possible consequences of climate change. Ann Agr Env Med 13(2):209–224Google Scholar
  30. González Minero FJ, Candau P, Tomás C, Morales J (1997) Variación anual y estacional del polen de Urticaceae en el aire de Sevilla y su relación con los factores meteorológicos. Polen 8:60–77Google Scholar
  31. Govindaraju RS (2000) Artificial neural networks in hydrology I: preliminary concepts. J Hydrol Eng 5(2):115–123Google Scholar
  32. Grinn-Gofrón A, Strzelczak A (2008) Artificial neural network models of relationships between Cladosporium spores and meteorological factors in Szczecin (Poland). Grana 47(4):305–315Google Scholar
  33. Guardia R, Belmonte J (2004) Phenology and pollen production of Parietaria judaica L in Catalonia (NE Spain). Grana 43(1):57–64Google Scholar
  34. Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):4–9. http://palaeoelectronica.org/2001_1/past/issue1_01.htm. Accessed 10 Feb 2018
  35. Harteveld DOC, Grant MR, Pscheidt JW, Peever TL (2017) Predicting Ascospore release of Monilinia vaccinii-corymbosi of blueberry with machine learning. Ecol Epidemiol 107(11):1364–1371Google Scholar
  36. Hirst JM (1952) An automatic volumetric spore trap. Annals Appl Biol 39(2):257–265Google Scholar
  37. Holgate ST, Jackson L, Watson HK, Ganderton MA (1988) Sensitivity to Parietaria pollen in the Southampton area as determined by skin-prick and RAST tests. Clin Exp Allergy 18(6):549–556Google Scholar
  38. Ianovici N, Panaitescu CB, Brudiu I (2013) Analysis of airborne allergenic pollen spectrum for 2009 in Timisoara, Romania. Aerobiologia 29(1):95–111Google Scholar
  39. Iglesias-Otero MA (2013) Bioinformática aplicada á aerobioloxía, Universidad de VigoGoogle Scholar
  40. Kaufman HS (1990) Parietaria: an unrecognized cause of respiratory allergy in the United States. Ann Allerg 64(3):293–296Google Scholar
  41. Lee J, Lee K (2000) Use of hydrologic time series data for identification of recharge mechanism in a fractured bedrock aquifer system. J Hydrol 229(3–4):190–201Google Scholar
  42. Makris M, Koulouris S, Koti I, Aggelides X, Sideri K, Chliva C (2010) Temporal relationship of allergic rhinitis with asthma and other co-morbidities in a Mediterranean country: a retrospective study in a tertiary reference allergy clinic. Allergol Immunopathol 38(5):246–253Google Scholar
  43. Masullo M, Mariotta S, Torrelli L, Graziani E, Anticoli S, Mannino F (1996) Respiratory allergy to Parietaria pollen in 348 subjects. Allergol Immunopathol 24(1):3–6Google Scholar
  44. Negrini AC, Voltolini S, Troise C, Arobda D (1992) Comparison between Urticaceae (Parietaria) pollen count and hay fever symptoms: assessment of a “threshold-value”. Aerobiologia 8:325–329Google Scholar
  45. Pérez OA, Gorgues RRM (1986) Alergia a la Parietaria. Bencard Publ, Beecham Pharm Res Div, MadridGoogle Scholar
  46. Perpetuo EA, Silva DN, Avanzi IR, Gracioso LH, Baltazar MPG, Nascimento CAO (2012) Phenol biodegradation by a microbial consortium: application of artificial neural network (ANN) modelling. Environ Tech 33(15):1739–1745Google Scholar
  47. Portier CJ, Thigpen-Tart K, Carter SR, Dilworth CH, Grambsch AE (2010) A human health perspective on climate change: a report outlining the research needs on the human health effects of climate change. Environmental Health Perspectives and the National Institute of Environmental Health Sciences. https://www.niehs.nih.gov/health/materials/a_human_health_perspective_on_climate_change_full_report_508.pdf. Accessed 10 Feb 2018
  48. Puc M (2012) Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 565(2):395–401Google Scholar
  49. Recio M, Rodríguez-Rajo FJ, Jato V, Trigo MM, Cabezudo B (2009) The effect of recent climatic trends on Urticaceae pollination in two bioclimatically different areas in the Iberian Peninsula: Malaga and Vigo. Clim Chang 97(1):215–228Google Scholar
  50. Recio M, Docampo S, Garcia-Sanchez J, Trigo M, Melgar M, Cabezudo B (2010) Influence of temperature, rainfall and wind trends on grass pollination in Malaga (western Mediterranean coast). Agric Forest Meteorol 150(7–8):931–940Google Scholar
  51. Reyes ES, de la Cruz DR, Sánchez JS (2016) First fungal spore calendar of the middle-west of the Iberian Peninsula. Aerobiologia 32(3):529–539Google Scholar
  52. Ritenberga O, Sofiev M, Kirillova V, Kalnina L, Genikhovich E (2016) Statistical modelling of non-stationary processes of atmospheric pollution from natural sources: example of birch pollen. Agric For Meteorol 226-227:96–107Google Scholar
  53. Rivas-Martínez S (1987) Memoria del mapa de series de vegetación de España. Ministerio de Agricultura, Pesca y Alimentación, MadridGoogle Scholar
  54. Rodriguez-Damián M, Cernadas E, Formella A, González A (2003) Automatic identification and classification of pollen of the Urticaceae family. Proceedings of Acivs (Advanced Concepts for Intelligent Vision Systems), Ghent, Belgium: 38–45 pp.Google Scholar
  55. Rodríguez-Rajo FJ, Dacosta N, Jato V (2004) Airborne olive pollen in Vigo (Northwest Spain): a survey to forecast the onset and daily concentrations of the pollen season. Grana 43(2):101–110Google Scholar
  56. Rodríguez-Rajo FJ, Valencia-Barrera RM, Vega-Maray AM, Suárez FJ, Fernández-González D, Jato V (2006) Prediction of airborne Alnus pollen concentration by using ARIMA models. Ann Agric Environ Med 13(1):25–32Google Scholar
  57. Rodriguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodriguez MV, Mejuto JC (2010) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23(3):419–425Google Scholar
  58. Sabo NC, Popovic A, Dordevic D (2015) Air pollution by pollen grains of anemophilous species: influence of chemical and meteorological parameters. Water Air Soil Poll 9:226–292Google Scholar
  59. Sabo NC, Kiš T, Janackovic P, Ðordevic D, Popovic A (2016) Pollution by urticaceae pollen -influence of selected air pollutants and meteorological parameters. Environ Sci Pollut R 23(10):10072–10079Google Scholar
  60. Sahu P, López DL, Stoertz MW (2009) Using time series analysis of coal mine hydrographs to estimate mine storage, retention time, and mine-pool interconnection. Mine Water Environ 28(3):194–205Google Scholar
  61. Sánchez-Mesa JA, Galán C, Hervás-Martínez C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Int J Biometeorol 49:355–362Google Scholar
  62. Serafini U (1957) Studies on hay fever: with special regard to pollinosis due to Parietaria officinalis. Allergy 11(1):3–27Google Scholar
  63. Sousa R, Ribeiro H, Cruz A, Duque L, Abreu I (2014) Parietaria judaica pollen: Aerobiology and allergenicity [Pólen de parietaria judaica: Aerobiologia e alergenicidade]. Rev Port Imunoalergol 22(2):81–92Google Scholar
  64. Suárez-Cervera M, Vega-Maray A, Castells T, Rodríguez-Rajo FJ, Asturias JA, Le Thomas A, Seoane-Camba JA (2008) An approach to the knowledge of pollen and allergen diversity through lipid transfer protein localisation in taxonomically distant pollen grains. Grana 47(4):272–284Google Scholar
  65. Subiza FJ, Pola J, Feo Brito F, Moral de Gregorio AS (2007) Pólenes de interés en alergología en nuestro medio. In: Peláez A, Dávila IJ (eds) Tratado de alergología vol 1 Madrid, Spain: Ergon; 2007: 425–443. Ergon, Madrid, pp 425–443Google Scholar
  66. Tedeschini E, Rodríguez-Rajo FJ, Caramiello R, Jato V, Frenguelli G (2006) The influence of climate changes in Platanus spp. pollination in Spain and Italy. Grana 45(3):222–229Google Scholar
  67. Tu V (1996) Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. J Clin Epidemiol 49(11):1225–1231Google Scholar
  68. Vega-Maray AM, Fernández-González D, Valencia-Barrera R, Polo F, Seoane-Camba JA, Suárez-Cervera M (2004) Lipid transfer proteins in Parietaria judaica L pollen grains: immunocytochemical localization and function. Eur J Cell Biol 83(9):493–497Google Scholar

Copyright information

© ISB 2019

Authors and Affiliations

  • J. A. Valencia
    • 1
  • G. Astray
    • 2
  • M. Fernández-González
    • 1
  • M. J. Aira
    • 3
  • F. J. Rodríguez-Rajo
    • 1
    Email author
  1. 1.Department of Plant Biology and Soil Sciences, Faculty of SciencesUniversity of VigoOurenseSpain
  2. 2.Physical Chemistry Department, Faculty of ScienceUniversity of VigoOurenseSpain
  3. 3.Botany Department, Faculty of PharmacyUniversity of SantiagoSantiago CompostelaSpain

Personalised recommendations