Advertisement

Relationship between climatic variables and the variation in bulk tank milk composition using canonical correlation analysis

  • Morgana Stürmer
  • Marcos Busanello
  • João Pedro Velho
  • Vanessa Isabel Heck
  • Ione Maria Pereira Haygert-Velho
Original Paper
  • 89 Downloads

Abstract

A number of studies have addressed the relations between climatic variables and milk composition, but these works used univariate statistical approaches. In our study, we used a multivariate approach (canonical correlation) to study the impact of climatic variables on milk composition, price, and monthly milk production at a dairy farm using bulk tank milk data. Data on milk composition, price, and monthly milk production were obtained from a dairy company that purchased the milk from the farm, while climatic variable data were obtained from the National Institute of Meteorology (INMET). The data are from January 2014 to December 2016. Univariate correlation analysis and canonical correlation analysis were performed. Few correlations between the climatic variables and milk composition were found using a univariate approach. However, using canonical correlation analysis, we found a strong and significant correlation (r c  = 0.95, p value = 0.0029). Lactose, ambient temperature measures (mean, minimum, and maximum), and temperature-humidity index (THI) were found to be the most important variables for the canonical correlation. Our study indicated that 10.2% of the variation in milk composition, pricing, and monthly milk production can be explained by climatic variables. Ambient temperature variables, together with THI, seem to have the most influence on variation in milk composition.

Keywords

Milk quality Bovine milk Protein Fat Somatic cell count Total bacterial count 

References

  1. Alessio DRM, Thaler Neto A, Velho JP, Pereira IB, Miquelluti DJ, Knob DA, Silva CG (2016) Multivariate analysis of lactose content in milk of Holstein and Jersey cows. Semin Ciênc Agrár 37:2641–2652.  https://doi.org/10.5433/1679-0359.2016v37n4Supl1p2641 CrossRefGoogle Scholar
  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Köppen’s climate classification map for Brazil. Meteorol Z 22:711–728.  https://doi.org/10.1127/0941-2948/2013/0507 CrossRefGoogle Scholar
  3. Bueno VFF, Mesquita AJ, Nicolau ES, Oliveira AN, Oliveira JP, Neves RBS, Mansur JRG, Thomaz LW (2005) Contagem celular somática: relação com a composição centesimal do leite e período do ano no Estado de Goiás. Ciênc Rural 35:848–854.  https://doi.org/10.1590/S0103-84782005000400016 CrossRefGoogle Scholar
  4. Çinar M, Serbester U, Ceyhan A, Gorgulu M (2015) Effect of somatic cell count on milk yield and composition of first and second lactation dairy cows. Ital J Anim Sci 14:3646–3108.  https://doi.org/10.4081/ijas.2015.3646 CrossRefGoogle Scholar
  5. Davison TM, Jonsson NN, Mayer DG, Gaughan JB, Ehrlich WK, McGowan MR (2016) Comparison of the impact of six heat-load management strategies on thermal responses and milk production of feed-pad and pasture fed dairy cows in a subtropical environment. Int J Biometeorol 60:1961–1968.  https://doi.org/10.1007/s00484-016-1183-2 CrossRefGoogle Scholar
  6. Eckstein II, Pozza MSS, Zambom MA, Ramos CECO, Tsutsumi CY, Fernandes T, Eckstein EI, Busanello M (2014) Qualidade do leite e sua correlação com técnicas de manejo de ordenha. Sci Agrar Paran 13:143–151.  https://doi.org/10.1818/sap.v13i2.7071 Google Scholar
  7. Gabbi AM, Peripolli V, Cobuci JA, Fischer V, Costa JBG Jr, McManus C (2017) Can meteorological variables affect milk production in different lactation orders of dairy cows in the Cfb climatic zone? A case study in southern Brazil. Arch Zootec 66:271–278.  https://doi.org/10.21071/az.v66i254.2332 Google Scholar
  8. Gantner V, Mijić P, Kuterovac K, Solić D, Gantner R (2011) Temperature-humidity index values and their significance on the daily production of dairy cattle. Mljekarstvo 61:56–63Google Scholar
  9. Gantner V, Bobic T, Gantner R, Gregic M, Kuterovac K, Novakovic J, Potocnik K (2017) Differences in response to heat stress due to production level and breed of dairy cows. Int J Biometeorol 61:1675–1685.  https://doi.org/10.1007/s00484-017-1348-7 CrossRefGoogle Scholar
  10. Garcia AB, Angeli N, Machado L, Cardoso FC, Gonzalez F (2015) Relationships between heat stress and metabolic and milk parameters in dairy cows in southern Brazil. Trop Anim Health Prod 47:889–894.  https://doi.org/10.1007/s11250-015-0804-9 CrossRefGoogle Scholar
  11. Gaughan JB, Lees AM, Sejian V (2017) Sixty years of animal biometeorology. Int J Biometeorol.  https://doi.org/10.1007/s00484-017-1459-1
  12. Gonzalez HL, Fischer V, Ribeiro ERR, Gomes JF, Stumpf W Jr, Silva MA (2004) Avaliação da qualidade do leite na bacia leiteira de Pelotas, RS. Efeito dos meses do ano. Rev Bras Zootec 33:1531–1543.  https://doi.org/10.1590/S1516-35982004000600020 CrossRefGoogle Scholar
  13. Hair JF, Anderson RE, Tatham RL, Black WC (1992) Multivariate data analysis. Macmillan, New YorkGoogle Scholar
  14. Hill DL, Wall E (2015) Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Animal 9:138–149.  https://doi.org/10.1017/S1751731114002456 CrossRefGoogle Scholar
  15. Javorová J, Falta D, Velecká M, Andrýsek J, Večeřa M, Studený S, Chládek G (2013) Effect of increasing temperature and changes in relative humidity on composition and technological properties of bulk milk samples from Czech Fleckvieh breed. Anim Welf Etol Tartastechnol 9:12–17Google Scholar
  16. Kabuga JD, Sarpong K (1991) Influence of weather conditions on milk production and rectal temperature of Holsteins fed two levels of concentrate. Int J Biometeorol 34:226–230.  https://doi.org/10.1007/BF01041833 CrossRefGoogle Scholar
  17. Kadzere CT, Murphy MR, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Livest Prod Sci 77:59–91.  https://doi.org/10.1016/S0301-6226(01)00330-X CrossRefGoogle Scholar
  18. Kibler HH (1964) . University Archives of the University of Missouri, ColumbiaGoogle Scholar
  19. Lin J, Yang A, Shah A (2010) Using SAS® to compute partial correlation. PharmaSUG 2010 Conference Papers. Merck & Co., Inc., RahwayGoogle Scholar
  20. Machado PF, Pereira AR, Sarríes GA (2000) Composição do leite de tanques de rebanhos brasileiros distribuídos segundo sua contagem de células somáticas. R Bras Zootec 29:1883–1886.  https://doi.org/10.1590/S1516-35982000000600038 CrossRefGoogle Scholar
  21. Manly BFJ (2004) Multivariate statistical methods: a primer. Chapman & Hall/CRC, LaramieGoogle Scholar
  22. Mardia KV (1970) Measures of multivariate skewness and kurtosis with applications. Biometrika 57:519–530.  https://doi.org/10.1093/biomet/57.3.519 CrossRefGoogle Scholar
  23. Mardia KV (1975) Assessment of multinormality and the robustness of Hotelling’s T2. Appl Stat 24:163–171.  https://doi.org/10.2307/2346563 CrossRefGoogle Scholar
  24. Milani M, Hense A, Rahmani E, Ploeger A (2015a) A pilot investigation of the relationship between climate variability and milk compounds under the bootstrap technique. Foods 4:420–439.  https://doi.org/10.3390/foods4030420 CrossRefGoogle Scholar
  25. Milani M, Hense A, Rahmani E, Ploeger A (2015b) A survey of the relationship between climatic heat stress indices and fundamental milk components considering uncertainty. Climate 3:876–900.  https://doi.org/10.3390/cli3040876 CrossRefGoogle Scholar
  26. Min L, Zhao S, Tian H, Zhou X, Zhang Y, Li S, Yang H, Zheng N, Wang J (2017) Metabolic responses and “omics” technologies for elucidating the effects of heat stress in dairy cows. Int J Biometeorol 61:1149–1158.  https://doi.org/10.1007/s00484-016-1283-z CrossRefGoogle Scholar
  27. Msechu JKK, Mgheni M, Syrstad O (1995) Influence of various climatic factors on milk production in cattle in Tanzânia. Trop Anim Health Prod 27:121–126CrossRefGoogle Scholar
  28. Paula MC, Martins EM, Silva LOC, Oliveira CAL, Valotto AA, Ribas NP (2009) Interação genótipo × ambiente para produção de leite de bovinos da raça Holandesa entre bacias leiteiras no estado do Paraná. Rev Bras Zootec 38:467–473.  https://doi.org/10.1590/S1516-35982009000300010 CrossRefGoogle Scholar
  29. Polsky L, Von Keyserlingk MAG (2017) Invited review: effects of heat stress on dairy cattle welfare. J Dairy Sci 100:8645–8657.  https://doi.org/10.3168/jds.2017-12651 CrossRefGoogle Scholar
  30. Porcionato MAF, Fernandes AM, Netto AS, Santos MV (2009) Influência do estresse calórico na produção e qualidade do leite. Rev Acad Ciênc Agrár Ambient 7:483–490Google Scholar
  31. Qi L, Bravo-Ureta BE, Cabrera VE (2015) From cold to hot: climatic effects and productivity in Wisconsin dairy farms. J Dairy Sci 98:8664–8677.  https://doi.org/10.3168/jds.2015-953 CrossRefGoogle Scholar
  32. Renaudeau D, Collin A, Yahav S, Basilio V, Gourdine JL, Collier RJ (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6:707–728.  https://doi.org/10.1017/S1751731111002448 CrossRefGoogle Scholar
  33. Sanker C, Lambertz C, Gauly M (2013) Climatic effects in Central Europe on the frequency of medical treatments of dairy cows. Animal 7:316–321.  https://doi.org/10.1017/S1751731112001668 CrossRefGoogle Scholar
  34. SAS Institute (2012) SAS Institute 2000. Release 8.02. 2000. SAS Inst. Inc., CaryGoogle Scholar
  35. Sharma AK, Rodriguez LA, Wilcox CJ, Collier RJ, Bachman KC, Martin FG (1988) Interactions of climatic factors affecting milk yield and composition. J Dairy Sci 71:819–825.  https://doi.org/10.3168/jds.S0022-0302(88)79622-8 CrossRefGoogle Scholar
  36. Silva HÁ, Koehler HS, Moraes A, Guimarães VDA, Hack E, Carvalho PCF (2008) Análise da viabilidade econômica da produção de leite a pasto e com suplementos na região dos Campos Gerais—Paraná. Ciênc Rural 38:445–450.  https://doi.org/10.1590/S0103-84782008000200024 CrossRefGoogle Scholar
  37. Smith DL, Smith T, Rude BJ, Ward SH (2013) Short communication: comparison of the effects of heat stress on milk and component yields and somatic cell score in Holstein and Jersey cows. J Dairy Sci 96:3028–3033.  https://doi.org/10.3168/jds.2012-5737 CrossRefGoogle Scholar
  38. Souza R (2008) Variação na produção e qualidade do leite de vacas da raça holandesa em função daestação do ano e ordem de parto. Dissertação, Universidade Estadual de MaringáGoogle Scholar
  39. Vargas DP, Nörnberg JL, Mello RO, Sheibler RB, Breda FC, Milani MP (2014) Correlações entre contagem de células somáticas e parâmetros físico-químicos e microbiológicos de qualidade do leite. Cienc Anim Bras 15:473–483CrossRefGoogle Scholar
  40. Veissier I, Van Laer E, Palme R, Moons CPH, Ampe B, Sonck B, Andanson S, Tuyttens FAM (2017) Heat stress in cows at pasture and benefit of shade in a temperate climate region. Int J Biometeorol 62:585–595.  https://doi.org/10.1007/s00484-017-1468-0 CrossRefGoogle Scholar

Copyright information

© ISB 2018

Authors and Affiliations

  1. 1.Graduate in Animal Science, Campus de Palmeira das MissõesFederal University of Santa MariaPalmeira das MissõesBrazil
  2. 2.Department of Animal Science, College of Agriculture“Luiz de Queiroz”/University of São Paulo - ESALQ/USPSão PauloBrazil
  3. 3.Department of Animal Science and Biological Sciences, Campus de Palmeira das MissõesFederal University of Santa MariaPalmeira das MissõesBrazil

Personalised recommendations