Ackerly DD, Bazzaz FA (1995) Plant growth and reproduction along CO2 gradients: non-linear responses and implications for community change. Glob Chang Biol 1:199–207
Article
Google Scholar
Albertine JM, Manning WJ, DaCosta M, Stinson KA, Muilenberg ML, Rogers CA (2014) Projected carbon dioxide to increase grass pollen and allergen exposure despite higher ozone levels. PLoS One 9:e111712
Article
CAS
Google Scholar
Anenberg SC, Weinberger KR, Roman H, Neumann JE, Crimmins A, Fann N, Martinich J, Kinney PL (2017) Impacts of oak pollen on allergic asthma in the United States and potential influence of future climate change. GeoHealth 1:80–92
Article
Google Scholar
Beggs PJ (2004) Impacts of climate change on aeroallergens: past and future. Clin Exp Allergy 34:1507–1513
Article
CAS
Google Scholar
Bianchi DE, Schwemmin DJ, Wagner WH Jr (1959) Pollen release in the common ragweed (Ambrosia artemisiifolia). Bot Gaz 120:235–243
Article
Google Scholar
Boavida LC, Silva JP, Feijo JA (2001) Sexual reproduction in the cork oak (Quercus suber L). II. Crossing intra- and interspecific barriers. Sex Plant Reprod 14:143–152
Article
Google Scholar
Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
Article
CAS
Google Scholar
Choung Y, Lee B-C, Cho J-H, Lee K-S, Jang I-S, Kim S-H, Hong S-K, Jung H-C, Choung H-L (2004) Forest responses to the large-scale east coast fires in Korea. Ecol Res 19:43–54
Article
Google Scholar
Deng X, Woodward FI (1998) The growth and yield responses of Fragaria ananassa to elevated CO2 and N supply. Ann Bot 81:67–71
Article
Google Scholar
Emberlin J, Mullins J, Corden J, Jones S, Millington W, Brooke M, Savage M (1999) Regional variations in grass pollen seasons in the UK, long-term trends and forecast models. Clin Exp Allergy 29:347–356
Article
CAS
Google Scholar
Fann N, Brennan T, Dolwick P, Gamble JL, Ilacqua V, Kolb L, Nolte CG, Spero TL, Ziska L (2016) Ch. 3: air quality impacts. In: The impacts of climate change on human health in the United States: a scientific assessment. U.S. Global Change Research Program, Washington, D.C., pp 69–98. https://doi.org/10.7930/J0GQ6VP6
Chapter
Google Scholar
García-Mozo H, Galán C, Belmonte J, Fernández D, Rodriguez FJ (2002) Modelling start of oak pollen season in different climatic zones in Spain. Agric For Meteorol 110:247–257
Article
Google Scholar
IPCC (2013) Summary for policymakers. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, United Kingdom
Google Scholar
Iverson LR, Prasad AM, Matthews SN, Peters M (2008) Estimating potential habitat for 134 eastern US tree species under six climate scenarios. For Ecol Manag 254:390–406
Article
Google Scholar
Jeong SJ, Medvigy D, Shevliakova E, Malyshev S (2012) Uncertainties in terrestrial carbon budgets related to spring phenology. J Geophys Res 117:G01030. https://doi.org/10.1029/2011JG001868
Article
CAS
Google Scholar
Kremer A, Petit RJ (1993) Gene diversity in natural populations of oak species. Ann For Sci 50:186s–202s
Article
Google Scholar
Kuribayashi M, Noh N-J, Saitoh TM, Ito A, Wakazuki Y, Muraoka H (2017) Current and future carbon budget at Takayama site, Japan, evaluated by a regional climate model and a process-based terrestrial ecosystem model. Int J Biometeorol 61:989–1001
Article
Google Scholar
Lee J-C, Kim D-H, Kim GN, Kim P-G, Han S-H (2012) Long-term climate change research facility for trees: CO2-enriched open top chamber system. Korean J Agric For Meteorol 14:19–27
Article
Google Scholar
Lee JY, Yang M, Jeong KY, Sim DW, Park JH, Park KH, Lee JH, Park JW (2017) Characterization of major allergen from Mongolian oak, Quercus mongolica, a dominant species of oak in Korea. Int Arch Allergy Immunol 174:77–85
Article
CAS
Google Scholar
Moser A, Rahman MA, Pretzsch H, Pauleit S, Roetzer T (2017) Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. Int J Biometeorol 61:1095–1107
Article
Google Scholar
NOAA/ESRL. (2017) Trends in atmospheric carbon dioxide. http://www.esrl.noaa.gov/gmd/ccgg/trends/. Accessed 29 June 2017
Oh JW, Lee HB, Kang IJ, Kim SW, Park KS, Kook MH, Kim BS, Baek HS, Kim JH, Kim JK, Lee DJ, Kim KR, Choi YJ (2012) The revised edition of Korean calendar for allergenic pollen. Allergy, Asthma Immunol Res 4:5–11
Article
Google Scholar
Reid CE, Gamble JL (2009) Aeroallergens, allergic disease, and climate change: impacts and adaptation. EcoHealth 6:458–470
Article
Google Scholar
Rogers CA, Wayne PM, Macklin EA, Muilenberg ML, Wagner CJ, Epstein PR, Bazzaz FA (2006) Interaction of the onset of spring and elevated atmospheric CO2 on ragweed (Ambrosia artemisiifolia L.) pollen production. Environ Health Perspect 114:865–869
Article
CAS
Google Scholar
Ryu D, Bae J, Park J, Cho S, Moon M, Oh C-Y, Kim HS (2014) Responses of native trees species in Korea under elevated carbon dioxide condition—open top chamber experiment. Korean J Agric For Meteorol 16:199–212
Article
Google Scholar
Seo D-J, Oh C-Y, Han S-H, Lee J-C (2014) Effects of elevated CO2 concentration on leaf phenology of Quercus acutissima. Korean J Agric For Meteorol 16:213–218
Article
Google Scholar
Schmidt CW (2016) Pollen overload seasonal allergies in a changing climate. Environ Health Persp 124:A71–A75
Google Scholar
Shao G (1996) Potential impacts of climate change on a mixed broadleaved-Korean pine forest stand: a gap model approach. Clim Chang 34:263–268
Article
Google Scholar
Sheffield PE, Weinberger KR, Ito K, Matte TD, Mathes RW, Robinson GS, Kinny PL (2011a) The association of tree pollen concentration peaks and allergy medicine sales in New York City: 2003–2008. Inter Schol Res Net ISRN Allergy 2011:1–7. https://doi.org/10.5402/2011/537194
Article
Google Scholar
Sheffield PE, Weinberger KR, Kinny PL (2011b) Climate change, aeroallergens and pediatric allergic disease. Mt Sinai J Med 78:78–84
Article
Google Scholar
Singer BD, Ziska LH, Frenz DA, Gebhard DE, Straka JG (2005) Increasing Amb a 1 content in common ragweed (Ambrosia artemisiifolia) pollen as a function of rising atmospheric CO2 concentration. Funct Plant Biol 32:667–670
Article
CAS
Google Scholar
Wayne P, Foster S, Connolly J, Bazzaz F, Epstein P (2002) Production of allergenic pollen by ragweed (Ambrosia artemisiifolia L.) is increased in CO2-enriched atmospheres. Ann Allergy Asthma Immunol 88:279–282
Article
Google Scholar
Whittemore AT (2004) Sawtooth oak (Quercus acutissima, Fagaceae) in North America. SIDA, Contributions to Botany 21:447–454
Google Scholar
Zhang Y, Bielory L, Georgopoulos PG (2014) Climate change effect on Betula (birch) and Quercus (oak) pollen seasons in the United States. Int J Biometeorol 58:909–919
Article
Google Scholar
Ziska LH, Beggs PJ (2012) Anthropogenic climate change and allergen exposure: the role of plant biology. J Allergy Clin Immunol 129:27–32. https://doi.org/10.1016/j.jaci.2011.10.032
Article
Google Scholar
Ziska LH, Caulfield FA (2000) Rising CO2 and pollen production of common ragweed (Ambrosia artemisiifolia), a known allergy-inducing species: implications for public health. Aust J Plant Physiol 27:893–898
Google Scholar