Pan European Phenological database (PEP725): a single point of access for European data

Abstract

The Pan European Phenology (PEP) project is a European infrastructure to promote and facilitate phenological research, education, and environmental monitoring. The main objective is to maintain and develop a Pan European Phenological database (PEP725) with an open, unrestricted data access for science and education. PEP725 is the successor of the database developed through the COST action 725 “Establishing a European phenological data platform for climatological applications” working as a single access point for European-wide plant phenological data. So far, 32 European meteorological services and project partners from across Europe have joined and supplied data collected by volunteers from 1868 to the present for the PEP725 database. Most of the partners actively provide data on a regular basis. The database presently holds almost 12 million records, about 46 growing stages and 265 plant species (including cultivars), and can be accessed via http://www.pep725.eu/. Users of the PEP725 database have studied a diversity of topics ranging from climate change impact, plant physiological question, phenological modeling, and remote sensing of vegetation to ecosystem productivity.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig 2

References

  1. Basler D (2016) Evaluating phenological models for the prediction of leaf-out dates in six temperate tree species across central Europe. Agric For Meteorol 217:10–21

    Article  Google Scholar 

  2. Bussel LGJ, Stehfest E, Siebert S, Müller C, Ewert F (2015) Simulation of the phenological development of wheat and maize at the global scale. Glob Ecol Biogeogr 24(9):1018–1029

    Article  Google Scholar 

  3. Chen M, Melaas EK, Gray JM, Friedl MA, Richardson AD (2016) A new seasonal-deciduous spring phenology submodel in the Community Land Model 4.5: impacts on carbon and water cycling under future climate scenarios. Glob Chang Biol 22(11):3675–3688

    Article  Google Scholar 

  4. Cook BI, Wolkovich EM, Davies TJ, Ault TR, Betancourt JL, Allen JM, Bolmgren K, Cleland EE, Crimmins TM, Kraft NJ, Lancaster LT (2012) Sensitivity of spring phenology to warming across temporal and spatial climate gradients in two independent databases. Ecosystems 15(8):1283–1294

    Article  Google Scholar 

  5. Crabbe RA, Dash J, Rodriguez-Galiano VF, Janous D, Pavelka M, Marek MV (2016) Extreme warm temperatures alter forest phenology and productivity in Europe. Sci Total Environ 563:486–495

    Article  CAS  Google Scholar 

  6. Delpierre N, Guillemot J, Dufrêne E, Cecchini S, Nicolas M (2017) Tree phenological ranks repeat from year to year and correlate with growth in temperate deciduous forests. Agric For Meteorol 234:1–10

    Article  Google Scholar 

  7. Dierenbach J, Badeck F-W, Schaber J (2013) The plant phenological online database (PPODB): an online database for long-term phenological data. Int J Biometeorol 57:805–812

    Article  Google Scholar 

  8. Demaree GR, Rutishauser T (2011) From “periodical observations” to “anthochronology” and “phenology”—the scienctific debate between Adolphe Quetelet and Charles Morren on the origin of the word “phenology”. Int J Biometeorol 55:753–761

    Article  Google Scholar 

  9. Duputié A, Rutschmann A, Ronce O, Chuine I (2015) Phenological plasticity will not help all species adapt to climate change. Glob Chang Biol 21(8):3062–3073

    Article  Google Scholar 

  10. Fitter AH, Fitter RSR, Harris ITB, Williamson MH (1995) Relationship between 1st flowering date and temperature in the flora of a locality in Central England. Funct Ecol 9:55–60

    Article  Google Scholar 

  11. Fu YH, Piao S, Op de Beeck M, Cong N, Zhao H, Zhang Y, Menzel A, Janssens IA (2014a) Recent spring phenology shifts in western Central Europe based on multiscale observations. Glob Ecol Biogeogr 23:1255–1263

    Article  Google Scholar 

  12. Fu YS, Campioli M, Vitasse Y, De Boeck HJ, Van den Berge J, Abdelgawad H, Asard H, Piao S, Deckmyn G, Janssens IA (2014b) Variation in leaf flushing date influences autumnal senescence and next year’s flushing date in two temperate tree species. Proc Natl Acad Sci U S A 111(20):7355–7360

    Article  CAS  Google Scholar 

  13. Fu YH, Zhao H, Piao S, Peaucelle M, Peng S, Zhou G, Ciais P, Huang M, Menzel A, Peñuelas J, Song Y (2015a) Declining global warming effects on the phenology of spring leaf unfolding. Nature 526:104–107

    Article  CAS  Google Scholar 

  14. Fu YH, Piao S, Vitasse Y, Zhao H, De Boeck HJ, Liu Q, Yang H, Weber U, Hänninen H, Janssens IA (2015b) Increased heat requirement for leaf flushing in temperate woody species over 1980–2012: effects of chilling, precipitation and insolation. Glob Chang Biol 21(7):2687–2697

    Article  Google Scholar 

  15. Fraga H, García de Cortázar Atauri I, Malheiro AC, Santos JA (2016) Modelling climate change impacts on viticultural yield, phenology and stress conditions in Europe. Glob Chang Biol 22(11):3774–3788

    Article  Google Scholar 

  16. Gonsamo A, Chen JM (2016) Circumpolar vegetation dynamics product for global change study. Remote Sens Environ 182:13–26

    Article  Google Scholar 

  17. Guan BT (2014) Ensemble empirical mode decomposition for analyzing phenological responses to warming. Agric For Meteorol 194:1–7

    Article  Google Scholar 

  18. Hamunyela E, Verbesselt J, Roerink G, Herold M (2013) Trends in spring phenology of western European deciduous forests. Remote Sens 5(12):6159–6179

    Article  Google Scholar 

  19. Jochner S, Sparks TH, Laube J, Menzel A (2016) Can we detect a nonlinear response to temperature in European plant phenology? Int J Biometeorol 60:1551–1561

    Article  Google Scholar 

  20. Jurkovic A, Hubner T, Koch E, Lipa W, Scheifinger H, Ungersbuck M, Zach-Hermann S (2013) The Pan European Phenological database PEP725: data content and quality. EUMETNET 9th Data management Workshop, 5-8 November. El Escorial, Spain

    Google Scholar 

  21. Koch E, Bruns E, Chmielewski FM, Defila C, Lipa W, Menzel A (2009) Guidelines for plant phenological observations. WMO/TD No. 1484. World Meteorological Organization, Geneva

    Google Scholar 

  22. Lapenis A, Henry H, Vuille M, Mower J (2014) Climatic factors controlling plant sensitivity to warming. Clim Chang 122:723–734

    Article  Google Scholar 

  23. Linnaeus C (1751) Philosophia Botanica. (English translation by Stephen Freer). Oxford University Press, Stockholm, Amsterdam

  24. Linnaeus C, Bark H (1753) Vernatio arborum. Uppsala

  25. Martínez-Lüscher J, Kizildeniz T, Vučetić V, Dai Z, Luedeling E, van Leeuwen C, Gomès E, Pascual I, Irigoyen JJ, Morales F Delrot S (2016) Sensitivity of grapevine phenology to water availability, temperature and Co2 concentration. Front Environ Sci 4:48. https://doi.org/10.3389/fenvs.2016.00048

  26. Meier U (1997) BBCH-monograph: growth stages of mono- and dicotyledonous plants. Blackwell Wissenschafts-Verlag, Berlin

    Google Scholar 

  27. Mellert KH, Lenoir J, Winter S, Kölling C, Čarni A, Dorado-Liñán I, Gégout JC, Göttlein A, Hornstein D, Jantsch M, Juvan N (2017) Soil water storage appears to compensate for climatic aridity at the xeric margin of European tree species distribution. Eur J For Res 1–14. https://doi.org/10.1007/s10342-017-1092-x

  28. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  29. Menzel A, Sparks T, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kubler K, Bissolli P, Braslavska O, Briede A et al (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

    Article  Google Scholar 

  30. Olsson C, Jönsson AM (2014) Process based models not always better than empirical models for simulating budburst of Norway spruce and birch in Europe. Glob Chang Biol 20(11):3492–3507

    Article  Google Scholar 

  31. Nekovář J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski FE (2008) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  32. Piao S, Tan J, Chen A, Fu YH, Ciais P, Liu Q, Janssens IA, Vicca S, Zeng Z, Jeong SJ, Li Y (2015) Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun 6:6911. https://doi.org/10.1038/ncomms7911

    Article  CAS  Google Scholar 

  33. Puppi G (2007) Origin and development of phenology as a science. Ital J Agron 3:24–29

    Google Scholar 

  34. Rodriguez-Galiano VF, Dash J, Atkinson PM (2015) Intercomparison of satellite sensor land surface phenology and ground phenology in Europe. Geophys Res Lett 42:2253–2260

    Article  Google Scholar 

  35. Sakalli A, Simpson D (2012) Towards the use of dynamic growing seasons in a chemical transport model. Biogeosciences 9(12):5161–5179

    Article  Google Scholar 

  36. Scheifinger H, Templ B (2016) Is citizen science the recipe for the survival of paper-based phenological networks in Europe? Bioscience 66:533–534

    Article  Google Scholar 

  37. Schwartz MD (1998) Green-wave phenology. Nature 394:839–840

    Article  CAS  Google Scholar 

  38. Sobrino JA, Julien Y, Sòria G (2013) Phenology estimation from Meteosat second generation data. IEEE J Sel Topics Appl Earth Observ Remote Sens 6:1653–1659

    Article  Google Scholar 

  39. Tang J, Körner C, Muraoka H, Piao S, Shen M, Thackeray SJ, Yang X (2016) Emerging opportunities and challenges in phenology: a review. Ecosphere 7:e01436

    Article  Google Scholar 

  40. Verger A, Filella I, Baret F, Peñuelas J (2016) Vegetation baseline phenology from kilometric global LAI satellite products. Remote Sens Environ 178:1–14

    Article  Google Scholar 

  41. Vitasse Y, Basler D (2013) What role for photoperiod in the bud burst phenology of European beech. Eur J For Res 132:1–8

    Article  Google Scholar 

  42. Wang T, Ottlé C, Peng S, Janssens IA, Lin X, Poulter B, Yue C, Ciais P (2014) The influence of local spring temperature variance on temperature sensitivity of spring phenology. Glob Chang Biol 20:1473–1480

    Article  Google Scholar 

  43. Wang C, Tang Y, Chen J (2016) Plant phenological synchrony increases under rapid within-spring warming. Sci Rep 6:25460. https://doi.org/10.1038/srep25460

  44. Wang H, Rutishauser T, Tao Z, Zhong S, Ge Q, Dai J (2017) Impacts of global warming on phenology of spring leaf unfolding remain stable in the long run. Int J Biometeorol 61:287–292

    Article  Google Scholar 

  45. Zust A, Susnik A, Habic B (2006) Data quality control procedures within the common European phenological data platform COST 725. Proceedings of the EMS-Sixth European Conference on Applied Climatology ECAC 2006, 4–8 September, Ljubljana, Slovenia

Download references

Acknowledgements

We thank the Zentralanstalt für Meteorologie und Geodynamik (ZAMG, Austria) for providing the infrastructure to store the growing number of data from Europe. Special thanks go to the Austrian Federal Ministry of Science, Research and Economy and to EUMETNET, and to all the institutes and scientists who provided data to the PEP725 database. Finally, we would like to emphasize our gratefulness to those data contributors who did not participate as authors in the writing of this manuscript: I. Chuine (French National Centre for Scientific Research, France), A. Donnelly (University of Wisconsin-Milwaukee, USA), G. Demaree (Royal Meteorological Institute of Belgium, Belgium), R. Gehrig (MeteoSwiss, Switzerland), O. Langvall (Swedish National Phenology Network, Sweden), K-K. Malgorzata (Institute of Meteorology and Water Management, Poland), E. Mateescu (National Meteorological Administration, Romania), G. dal Monte (Royal Meteorological Institute of Belgium, Italy), A. NiBhroin (Met Éireann, Ireland), T. Popovic (Institute of Hydrometeorology and Seismology of Montenegro), Z. Snopkova (Slovak Hydrometeorological Institute), S. Stevkova (Hydrometeorological Service of Republic of Macedonia), E. Vincze (Hungarian Meteorological Service), A. van Vliet (Wageningen University, The Netherlands), F.-E. Wielgolaski (The Norwegian Meteorological Institute, Norway).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Helfried Scheifinger.

Electronic supplementary material

ESM 1

(PDF 244 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Templ, B., Koch, E., Bolmgren, K. et al. Pan European Phenological database (PEP725): a single point of access for European data. Int J Biometeorol 62, 1109–1113 (2018). https://doi.org/10.1007/s00484-018-1512-8

Download citation

Keywords

  • Plant phenology
  • Europe
  • Long-term data
  • Climate change
  • Citizen science