Advertisement

International Journal of Biometeorology

, Volume 62, Issue 5, pp 809–822 | Cite as

Assessment of MODIS-derived indices (2001–2013) to drought across Taiwan’s forests

  • Chung-Te Chang
  • Hsueh-Ching Wang
  • Cho-ying Huang
Original Paper

Abstract

Tropical and subtropical ecosystems, the largest terrestrial carbon pools, are very susceptible to the variability of seasonal precipitation. However, the assessment of drought conditions in these regions is often overlooked due to the preconceived notion of the presence of high humidity. Drought indices derived from remotely sensed imagery have been commonly used for large-scale monitoring, but feasibility of drought assessment may vary across regions due to climate regimes and local biophysical conditions. Therefore, this study aims to evaluate the feasibility of 11 commonly used MODIS-derived vegetation/drought index in the forest regions of Taiwan through comparison with the station-based standardized precipitation index with a 3-month time scale (SPI3). The drought indices were further transformed (standardized anomaly, SA) to make them better delineate the spatiotemporal variations of drought conditions. The results showed that the Normalized Difference Infrared Index utilizing the near-infrared and shortwave infrared bands (NDII6) may be more superior to other indices in delineating drought patterns. Overall, the NDII6 SA-SPI3 pair yielded the highest correlation (mean r ± standard deviation = 0.31 ± 0.13) and was most significant in central and south Taiwan (r = 0.50–0.90) during the cold, dry season (January and April). This study illustrated that the NDII6 is suitable to delineate drought conditions in a relatively humid region. The results suggested the better performance of the NDII6 SA-SPI3 across the high climate gradient, especially in the regions with dramatic interannual amplifications of rainfall. This synthesis was conducted across a wide bioclimatic gradient, and the findings could be further generalized to a much broader geographical extent.

Keywords

Drought Leaf water content Normalized Difference Infrared Index (NDII) Seasonal precipitation Spring rainfall Standardized Precipitation Index (SPI) 

Notes

Acknowledgments

We thank Dr. Tim R. McVicar for his valuable input in improving this manuscript.

Funding information

This study was sponsored by the Ministry of Science and Technology of Taiwan (Grant Numbers MOST 103-2811-M-002-231, 103-2119-M-002-016-, 104-2116-M-002-012, 104-2811-M-002-064, 105-2410-H-002-218-MY3, 105-2811-H-002-024, and 106-2811-H-002-027) and National Taiwan University (106R104516).

Supplementary material

484_2017_1482_MOESM1_ESM.docx (258 kb)
ESM 1 (DOCX 258 kb)

References

  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EHT, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol Manage 259(4):660–684.  https://doi.org/10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  2. Anderegg WRL, Flint A, Huang CY, Flint L, Berry JA, Davis FW, Sperry JS, Field CB (2015) Tree mortality predicted from drought-induced vascular damage. Nat Geosci 8(5):367–371.  https://doi.org/10.1038/ngeo2400 CrossRefGoogle Scholar
  3. Anderson LO, Malhi Y, Aragão LEOC, Ladle R, Arai E, Barbier N, Phillips O (2010) Remote sensing detection of droughts in Amazonian forest canopies. New Phytol 187(3):733–750.  https://doi.org/10.1111/j.1469-8137.2010.03355.x CrossRefGoogle Scholar
  4. Asner GP (1998) Biophysical and biochemical sources of variability in canopy reflectance. Remote Sens Environ 64(3):234–253.  https://doi.org/10.1016/S0034-4257(98)00014-5 CrossRefGoogle Scholar
  5. Asner GP, Martin RE (2009) Spectral and chemical analysis of tropical forests: scaling from leaf to canopy levels. Remote Sens Environ 112:3958–3970CrossRefGoogle Scholar
  6. Belmecheri S, Babst F, Wahl ER, Stahle DW, Trouet V (2016) Multi-century evaluation of Sierra Nevada snowpack. Nat Clim Chang 6:2–3CrossRefGoogle Scholar
  7. Bhuiyan C, Singh RP, Kogan FN (2006) Monitoring drought dynamics in the Aravalli region (India) using different indices based on ground and remote sensing data. Int J Appl Earth Obs Geoinf 8(4):289–302.  https://doi.org/10.1016/j.jag.2006.03.002 CrossRefGoogle Scholar
  8. Brando PM, Balch JK, Nepstad DC, Morton DC, Putz FE, Coe MT, Silverio D, Macedo MN, Davidson EA, Nobrega CC, Alencar A, Soares-Filho BS (2014) Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc Natl Acad Sci U S A 111(17):6347–6352.  https://doi.org/10.1073/pnas.1305499111 CrossRefGoogle Scholar
  9. Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R, Alexiades M, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard C. GA, Bánki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Honorio Coronado EN, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Núñez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Guimarães Vieira IC, Vieira SA, Vilanova E, Vos VA, Zagt RJ (2015) Long-term decline of the Amazon carbon sink. Nature 519(7543):344–348.  https://doi.org/10.1038/nature14283 CrossRefGoogle Scholar
  10. Caccamo G, Chisholm LA, Bradstock RA, Puotinen ML (2011) Assessing the sensitivity of MODIS to monitor drought in high biomass ecosystems. Remote Sens Environ 115(10):2626–2639.  https://doi.org/10.1016/j.rse.2011.05.018 CrossRefGoogle Scholar
  11. Cai W, Wang G, Santoso A, McPhaden MJ, Wu L, Jin FF, Timmermann A, Collins M, Vecchi G, Lengaigne M, England MH, Dommenget D, Takahashi K, Guilyardi E (2015) Increase frequency of extreme La Niña events under greenhouse warming. Nat Clim Change 5(2):132–137.  https://doi.org/10.1038/nclimate2492 CrossRefGoogle Scholar
  12. Chang CT, Wang HC, Huang CY (2013) Impacts of vegetation onset time on the net primary productivity in a mountainous island in Pacific Asia. Environ Res Lett 8(4):045030.  https://doi.org/10.1088/1748-9326/8/4/045030 CrossRefGoogle Scholar
  13. Chang CT, Wang SF, Vadeboncoeur MA, Lin TC (2014a) Relating vegetation dynamics to temperature and precipitation at monthly and annual timescales in Taiwan using MODIS vegetation indices. Int J Remote Sens 35(2):598–620.  https://doi.org/10.1080/01431161.2013.871593 CrossRefGoogle Scholar
  14. Chang CT, Wang HC, Huang C (2014b) Retrieving multi-scale climatic variations from high dimensional time-series MODIS green vegetation cover in a tropical/subtropical mountainous island. J Mt Sci 11(2):407–420.  https://doi.org/10.1007/s11629-013-2835-x CrossRefGoogle Scholar
  15. Chen GTJ, Jiang Z, Wu MC (2003) Spring heavy rain events in Taiwan during warm episodes and the associated large-scale conditions. Mon Weather Rev 131(7):1173–1188.  https://doi.org/10.1175/1520-0493(2003)131<1173:SHREIT>2.0.CO;2 CrossRefGoogle Scholar
  16. Chen ST, Kuo CC, Yu PS (2009) Historical trends and variability of meteorological droughts in Taiwan. Hydrol Sci J 54(3):430–441.  https://doi.org/10.1623/hysj.54.3.430 CrossRefGoogle Scholar
  17. Chiu CA, Lin PH, Lu KC (2009) GIS-based tests for quality control of meteorological data and spatial interpolation of climate data. Mt Res Dev 29(4):339–249.  https://doi.org/10.1659/mrd.00030 CrossRefGoogle Scholar
  18. Chmielewski S, Chmielewski TJ, Tompalski P (2014) Land cover and landscape diversity analysis in the West Polesie Biosphere Reserve. Int Agrophys 28:153–162CrossRefGoogle Scholar
  19. Ciais P, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, de Noblet N, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437(7058):529–533.  https://doi.org/10.1038/nature03972 CrossRefGoogle Scholar
  20. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Chang 3:52–58CrossRefGoogle Scholar
  21. Diffenbaugh NS, Swain DL, Touma D (2015) Anthropogenic warming has increased drought risk in California. Proc Natl Acad Sci USA 112(13):3931–3936.  https://doi.org/10.1073/pnas.1422385112 CrossRefGoogle Scholar
  22. Doughty CE, Metcalfe DB, Girardin CAJ, Amézquita FF, Cabrera DG, Huasco WH, Silva-Espejo JE, Araujo-Murakami A, da Costa MC, Rocha W, Feldpausch TR, Mendoza ALM, da Costa ACL, Meir P, Phillips OL, Malhi Y (2015) Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519(7541):78–82.  https://doi.org/10.1038/nature14213 CrossRefGoogle Scholar
  23. Fauset S, Baker TR, Lewis SL, Feldpausch TR, Affum-Baffoe K, Foli EG, Hamer KC, Swaine MD (2012) Drought-induced shifts in the floristic and functional composition of tropical forests in Ghana. Ecol Lett 15(10):1120–1129.  https://doi.org/10.1111/j.1461-0248.2012.01834.x CrossRefGoogle Scholar
  24. Fu R (2015) Global warming-accelerated drying in the tropics. Proc Natl Acad Sci U S A 112(12):3593–3594.  https://doi.org/10.1073/pnas.1503231112 CrossRefGoogle Scholar
  25. Gao B (1996) NDWI—a normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens Environ 58(3):257–266.  https://doi.org/10.1016/S0034-4257(96)00067-3 CrossRefGoogle Scholar
  26. Gatti LV, Gloor M, Miller JB, Doughty CE, Malhi Y, Domingues LG, Basso LS, Martinewski A, Correia CSC, Borges VF, Freitas S, Braz R, Anderson LO, Rocha H, Grace J, Phillips OL, Lloyd J (2014) Drought sensitivity of Amazonian carbon balance revealed by atmospheric measurements. Nature 506(7486):76–80.  https://doi.org/10.1038/nature12957 CrossRefGoogle Scholar
  27. Gu Y, Brown JF, Verdin JP, Wardlow B (2007) A five-year analysis of MODIS NDVI and NDWI for grassland drought assessment over the central Great Plains of the United States. Geophys Res Lett 34:L06407Google Scholar
  28. Gu Y, Hunt E, Wardlow B, Basara JB, Brown JF, Verdin JP (2008) Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring Oklahoma Mesonet soil moisture data. Geophys Res Lett 35(22):L22401.  https://doi.org/10.1029/2008GL035772 CrossRefGoogle Scholar
  29. Guan H, Wilson J, Makhnin O (2005) Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. J Hydrometeorol 6(6):1018–1031.  https://doi.org/10.1175/JHM448.1 CrossRefGoogle Scholar
  30. Guan K, Pan M, Li H, Wolf A, Wu J, Medvigy D, Lyapustin AI (2015) Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat Geosci 8(4):284–289.  https://doi.org/10.1038/ngeo2382 CrossRefGoogle Scholar
  31. Hanigan IC, Butler CD, Kokic PN, Hutchinson MF (2012) Suicide and drought in New South Wales, Australia, 1970–2007. Proc Natl Acad Sci USA 109(35):13950–13955.  https://doi.org/10.1073/pnas.1112965109 CrossRefGoogle Scholar
  32. Hayes M, Svoboda M, Wall N, Widhalm M (2011) The Lincoln declaration on drought indices: universal meteorological drought index recommended. Bull Am Meteorol Soc 92(4):485–488.  https://doi.org/10.1175/2010BAMS3103.1 CrossRefGoogle Scholar
  33. Helldén U, Tottrup C (2008) Regional desertification: a global synthesis. Glob Planet Change 64(3-4):169–176.  https://doi.org/10.1016/j.gloplacha.2008.10.006 CrossRefGoogle Scholar
  34. Hirschi M, Seveniratne SI, Alexandrov V, Boberg F, Boroneant C, Christensen OB, Formayer H, Orlowsky B, Stpanek P (2011) Observational evidence for soil-moisture impact on hot extremes in southeastern Europe. Nat Geosci 4(1):17–21.  https://doi.org/10.1038/ngeo1032 CrossRefGoogle Scholar
  35. Hsu HH, Chen CT (2002) Observed and projected climate change in Taiwan. Meteorol Atmos Phys 79(1-2):87–104.  https://doi.org/10.1007/s703-002-8230-x CrossRefGoogle Scholar
  36. Huang CY, Anderegg WRL (2014) Vegetation, land surface brightness, and temperature dynamics after aspen forest die-off. J Geophys Res Biogeosci 119(7):1297–1308.  https://doi.org/10.1002/2013JG002489 CrossRefGoogle Scholar
  37. Huang CY, Chai CW, Chang CM, Huang JC, Hu KT, Lu ML, Chung YL (2013) An integrated optical remote sensing system for environmental perturbation research. IEEE J Sel Top App Earth Observ Remote Sens 6(6):2434–2444.  https://doi.org/10.1109/JSTARS.2013.2250489 CrossRefGoogle Scholar
  38. Huete A, Didan K, Miura T, Rodriguez EP, Gao X, Ferreira LG (2002) Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens Environ 83(1-2):195–213.  https://doi.org/10.1016/S0034-4257(02)00096-2 CrossRefGoogle Scholar
  39. Jain SK, Keshri R, Goswami A, Sarkar A (2010) Application of meteorological and vegetation indices for evaluation of drought impacts: a case study for Rajasthan, India. Nat Hazards 54(3):643–656.  https://doi.org/10.1007/s11069-009-9493-x CrossRefGoogle Scholar
  40. Ji L, Peters AJ (2003) Assessing vegetation response to drought in the northern Great Plains using vegetation and drought indices. Remote Sens Environ 87(1):85–98.  https://doi.org/10.1016/S0034-4257(03)00174-3 CrossRefGoogle Scholar
  41. Jian PY, Hu FS, Wang CP, Chiang JM, Lin TC (2013) Ecological facilitation between two epiphytes through drought mitigation in a subtropical rainforest. PLoS One 8(5):e64599.  https://doi.org/10.1371/journal.pone.0064599 CrossRefGoogle Scholar
  42. Kaptué AT, Prihodko L, Hanan NP (2015) On regreening and degradation in Sahelian watersheds. Proc Natl Acad Sci U S A 112(39):12133–12138.  https://doi.org/10.1073/pnas.1509645112 CrossRefGoogle Scholar
  43. Kindermann GE, McCallum I, Fritz S, Obersteiner M (2008) A global forest growing stock, biomass and carbon map based on FAO statistics. Silva Fenn 42:387–396CrossRefGoogle Scholar
  44. Kogan FN (1994) Application of vegetation index and brightness temperature for drought detection. Adv Space Res 15:91–100CrossRefGoogle Scholar
  45. Kogan FN (1997) Global drought watch from space. Bull Am Meteorol Soc 78(4):621–636.  https://doi.org/10.1175/1520-0477(1997)078%3C0621:GDWFS%3E2.0.CO;2
  46. Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA (2009) Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens Environ 113:S78–S91.  https://doi.org/10.1016/j.rse.2008.10.018 CrossRefGoogle Scholar
  47. Lloyd-Hughes B, Saunders MA (2002) A drought climatology for Europe. Int J Climatol 22(13):1571–1592.  https://doi.org/10.1002/joc.846 CrossRefGoogle Scholar
  48. McDowell NG, Allen CD (2015) Darcy’s law predicts widespread forest mortality under climate warming. Nat Clim Chang 5:699–672CrossRefGoogle Scholar
  49. McEvoy SJ, Huntington JL, Abatzoglou JT, Edwards LM (2012) An evaluation of multiscalar drought indices in Nevada and eastern California. Earth Interact 16(18):1–18.  https://doi.org/10.1175/2012EI000447.1 CrossRefGoogle Scholar
  50. McKee TB, Doesken NJ, Kliest J (1993) The relationship of drought frequency and duration to time series. In: Proceedings of the 8th conference on applied climatology, Boston, USA, pp 179−183Google Scholar
  51. McVicar TR, Bierwirth PN (2001) Rapidly assessing the 1997 drought in Papua New Guinea using composite AVHRR imagery. Int J Remote Sens 22(11):2109–2128.  https://doi.org/10.1080/01431160120728 CrossRefGoogle Scholar
  52. McVicar TR, Jupp DLB (1998) The current and potential operational uses of remote sensing to aid decides on drought exceptional circumstances in Australia: a review. Agric Syst 57(3):399–468.  https://doi.org/10.1016/S0308-521X(98)00026-2 CrossRefGoogle Scholar
  53. McVicar TR, Van Niel TG, Li LT, Hutchinson MF, Mu X, Liu Z (2007) Spatially distributing monthly reference evapotranspiration and pan evaporation considering topographic influences. J Hydrol 338(3-4):196–220.  https://doi.org/10.1016/j.jhydrol.2007.02.018 CrossRefGoogle Scholar
  54. Moukana JA, Asaue H, Koike K (2013) Cokriging for modeling shallow groundwater level changes in consideration of land use/land cover pattern. Environ Earth Sci 70(4):1495–1506.  https://doi.org/10.1007/s12665-013-2235-0 CrossRefGoogle Scholar
  55. Nemani R, Votava P, Michaelis A, Melton AM, Milesi C (2011) Collaborative supercomputing for global change science. EOS 92(13):109–110.  https://doi.org/10.1029/2011EO130001 CrossRefGoogle Scholar
  56. Overpeck J, Udall B (2010) Dry times ahead. Science 328(5986):1642–1643.  https://doi.org/10.1126/science.1186591 CrossRefGoogle Scholar
  57. Pai DS, Sridhar L, Guhathakurta P, Hatwar HR (2011) District-wide drought climatology of the southwest monsoon season over India based on standardized precipitation index (SPI). Nat Hazards 59(3):1797–1813.  https://doi.org/10.1007/s11069-011-9867-8 CrossRefGoogle Scholar
  58. Piao SL, Fang JY, Ji W, Guo QH, Ke JH, Tao S (2004) Variation in a satellite-based vegetation in relation to climate in China. J Veg Sci 15(2):219–226.  https://doi.org/10.1658/1100-9233(2004)015[0219:VIASVI]2.0.CO;2 CrossRefGoogle Scholar
  59. Quiring SM, Ganesh S (2010) Evaluating the utility of the vegetation condition index (VCI) for monitoring meteorological drought in Texas. Agric For Meteorol 150(3):330–339.  https://doi.org/10.1016/j.agrformet.2009.11.015 CrossRefGoogle Scholar
  60. Rhee J, Im J, Carbone GJ (2010) Monitoring agricultural drought for arid and humid regions using multi-sensor remote sensing data. Remote Sens Environ 114(12):2875–2887.  https://doi.org/10.1016/j.rse.2010.07.005 CrossRefGoogle Scholar
  61. Saatchi SS, Asefi-Najafabady S, Malhi Y, Aragão LEOC, Anderson LO, Myneni RB, Nenami R (2013) Persistent effects of a severe drought on Amazonian forest canopy. Proc Natl Acad Sci U S A 110(2):565–570.  https://doi.org/10.1073/pnas.1204651110 CrossRefGoogle Scholar
  62. Saigusa N, Ichii K, Murakami H, Hirata R, Asanuma J, Den H, Han SJ, Ide R, Li SG, Ohta T, Sasai T, Wang SQ, Yu GR (2010) Impact of meteorological anomalies in the 2003 summer on gross primary productivity in East Asia. Biogeosciences 7(2):641–655.  https://doi.org/10.5194/bg-7-641-2010 CrossRefGoogle Scholar
  63. Saleska SR, Didan K, Huete AR, da Rocha HR (2017) Amazon forests green-up during 2005 drought. Science 318:612CrossRefGoogle Scholar
  64. Stimson HC, Breshears DD, Ustin SL, Kefauver SC (2005) Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ 96(1):108–118.  https://doi.org/10.1016/j.rse.2004.12.007 CrossRefGoogle Scholar
  65. Townsend PA, Singh A, Foster JR, Rehberg NJ, Kingdon CC, Eshleman KN, Seagle SW (2012) A general Landsat model to predict canopy defoliation in broadleaf deciduous forests. Remote Sens Environ 119:255–265.  https://doi.org/10.1016/j.rse.2011.12.023 CrossRefGoogle Scholar
  66. Trenberth KE, Dai A, van der Schrier G, Jones PD, Barichivich J, Briffa KR, Sheffield J (2014) Global warming and changes in drought. Nat Clim Chang 4:17–22CrossRefGoogle Scholar
  67. Unganai LS, Kogan FN (1998) Drought monitoring and corn yield estimation in southern Africa from AVHRR data. Remote Sens Environ 63(3):219–232.  https://doi.org/10.1016/S0034-4257(97)00132-6 CrossRefGoogle Scholar
  68. Van Dijk AIJM, Beck HE, Crosbie RS, de Jeu RAM, Liu YY, Podger GM, Timbal B, Viney NR (2013) The Millennium drought in southeast Australia (2001–2009): natural and human causes and implications for water resources, ecosystems, economy, and society. Water Resour Res 49(2):1040–1057.  https://doi.org/10.1002/wrcr.20123 CrossRefGoogle Scholar
  69. Van Niel TG, McVicar TR, Fang H, Liang S (2003) Calculating environmental moisture for per-field discrimination of rice crops. Int J Remote Sens 24(4):885–890.  https://doi.org/10.1080/0143116021000009921 CrossRefGoogle Scholar
  70. Vicente-Serrano SM, Beguería S, Lorenzo-Larcruz J, Camarero JJ, López-Moreno JI, Azorin-Molina C, Revuelto J, Morán-Tejeda E, Sanchez-Lorenzo A (2012) Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact 16: no. 10Google Scholar
  71. Vicente-Serrano SM, Gouveia C, Camarero JJ, Begueria S, Trigo R, Lopez-Moreno JI, Azorin-Molina C, Pasho E, Lorenzo-Lacruz J, Revuelto J, Moran-Tejeda E, Sanchez-Lorenzo A (2013) Response of vegetation to drought time-scales across global land biomes. Proc Natl Acad Sci U S A 110(1):52–57.  https://doi.org/10.1073/pnas.1207068110 CrossRefGoogle Scholar
  72. Wang L, Qu JJ (2007) NMDI: a normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys Res Lett 34(20):L20405.  https://doi.org/10.1029/2007GL031021 CrossRefGoogle Scholar
  73. Wang L, Qu JJ, Hao X, Zhu Q (2008) Sensitivity studies of the moisture effects on MODIS SWIR reflectance and vegetation water indices. Int J Remote Sens 29(24):7065–7075.  https://doi.org/10.1080/01431160802226034 CrossRefGoogle Scholar
  74. Yen MC, Chen TC (2000) Seasonal variation of the rainfall over Taiwan. Int J Climatol 20(7):803–809.  https://doi.org/10.1002/1097-0088(20000615)20:7<803::AID-JOC525>3.0.CO;2-4 CrossRefGoogle Scholar
  75. Yu PS, Yang TC, Kuo CC (2006) Evaluating long-term trends in annual and seasonal precipitation in Taiwan. Water Resour Manage 20(6):1007–1023.  https://doi.org/10.1007/s11269-006-9020-8 CrossRefGoogle Scholar
  76. Zhang X, Goldberg M, Tarpley D, Friedl MA, Morisette J, Kogan F, Yu Y (2010) Drought-induced vegetation stress in southwestern North America. Environ Res Lett 5(2):024008.  https://doi.org/10.1088/1748-9326/5/2/024008 CrossRefGoogle Scholar
  77. Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329(5994):940–943.  https://doi.org/10.1126/science.1192666 CrossRefGoogle Scholar
  78. Zhou LM, Tucker CJ, Kaufmann RK, Slayback D, Shabanov NV, Myneni RB (2001) Variations in Northern Vegetation activity inferred from satellite data of vegetation index during 1981 to 1999. J Geophys Res 106(D17):20069–20083.  https://doi.org/10.1029/2000JD000115 CrossRefGoogle Scholar
  79. Zhou L, Tian Y, Myneni RB, Ciais P, Saatchi S, Liu YY, Piao S, Chen H, Vermote EF, Song C, Hwang T (2014) Widespread decline of Congo rainforest greenness in the past decade. Nature 509(7498):86–90.  https://doi.org/10.1038/nature13265 CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  • Chung-Te Chang
    • 1
  • Hsueh-Ching Wang
    • 1
    • 2
  • Cho-ying Huang
    • 1
  1. 1.Department of GeographyNational Taiwan UniversityTaipeiTaiwan
  2. 2.Graduate School of Disaster ManagementCentral Police UniversityTaoyuanTaiwan

Personalised recommendations