Skip to main content
Log in

Superposed epoch analysis of physiological fluctuations: possible space weather connections

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

There is a strong connection between space weather and fluctuations in technological systems. Some studies also suggest a statistical connection between space weather and subsequent fluctuations in the physiology of living creatures. This connection, however, has remained controversial and difficult to demonstrate. Here we present support for a response of human physiology to forcing from the explosive onset of the largest of space weather events—space storms. We consider a case study with over 16 years of high temporal resolution measurements of human blood pressure (systolic, diastolic) and heart rate variability to search for associations with space weather. We find no statistically significant change in human blood pressure but a statistically significant drop in heart rate during the main phase of space storms. Our empirical findings shed light on how human physiology may respond to exogenous space weather forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. Dr. Halberg consented to being identified with these data.

References

  • Adams JB, Mann ME, Ammann CM (2003) Proxy evidence for an El Nino-like response to volcanic forcing. Nature 426:274–278. https://doi.org/10.1038/nature02101

    Article  Google Scholar 

  • Baevsky RM et al (1997) Meta-analyzed heart rate variability, exposure to geomagnetic storms, and the risk of ischemic heart disease. Scr Med (Brno) 70:199–204

    Google Scholar 

  • Breus TK Rapoport S I (2003) Magnitnie bure: Medico-biologicheskie i geofizicheskie aspekti [Magnetic storms: Medico-biological and geophysical aspects], Moscow: Sovetskiy Sport Izdatel'stvo; 192 pp.192

  • Brier GW, Bradley DA (1964) The lunar synodic period and precipitation in the US. J Atmos Sci 21:386–395

    Article  Google Scholar 

  • Chapman S (1919) An outline of the theory of magnetic storms. Proc R Soc London Ser A 95:61

    Article  Google Scholar 

  • Chibisov SM, Cornélissen G, Halberg F (2004) Magnetic storm effect on the circulation of rabbits. Biomed Pharmacother 58:S15–S19. https://doi.org/10.1016/S0753-3322(04)80003-9

    Article  Google Scholar 

  • Chizhevsky AL (1938) Les épidémies et les perturbations électromagnétiques du milieu extérieur. Éditions Hippocrate, Paris 239 pp

    Google Scholar 

  • Chizhevsky AL (1940) Cosmobiologie et rthyme du milieu extérieur. In: Holmgren HJ, Ed. Verhandlungen, Zweiten Konferenz der Internationalen Gesellschaft für Biologische Rhythmusforschung, am 25. und 26. August 1939, Utrecht, Holland. Acta Med Scand 108(Suppl.):211–26

  • Conover WJ (1980) Practical Nonparametric Statistics. Wiley, Hoboken

    Google Scholar 

  • Cornélissen G, Halberg F, Breus T, Syutkina EV, Baevsky R, Weydahl A, Watanabe Y, Otsuka K, Siegelova J, Fiser B, Bakken EE (2002) Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Solar-Terr Phys 64:707–720. https://doi.org/10.1016/S1364-6826(02)00032-9

    Article  Google Scholar 

  • Cornélissen G, Halberg F, Bakken EE et al (2004) 100 or 30 years after Janeway or Bartter, Healthwatch helps avoid “flying blind”. Biomed Pharmacother 58(Suppl 1):S69–S86

    Article  Google Scholar 

  • Delp MD, Charvat JM, Limoli CL, Globus RK, Ghosh P (2016) Apollo lunar astronauts show higher cardiovascular disease mortality: possible deep space radiation effects on the vascular endothelium. Sci Rep 6:29901. https://doi.org/10.1038/srep29901

    Article  CAS  Google Scholar 

  • Derrac J, García S, Molina D, Herrera F (2011) A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1(1):3–18. https://doi.org/10.1016/j.swevo.2011.02.002

    Article  Google Scholar 

  • Dobias P, Wanliss JA (2009) Intermittency of storms and substorms: is it related to the critical behaviour? Ann Geophys 27:2011–2018

    Article  Google Scholar 

  • Fay MP, Proschan MA (2010) Wilcoxon–Mann–Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv 4:1–39. https://doi.org/10.1214/09-SS051

    Article  Google Scholar 

  • Freeman MP, Morley SK (2009) No evidence for externally triggered substorms based on superposed epoch analysis of IMF B z. Geophys Res Lett 36:L21101. https://doi.org/10.1029/2009GL040621

    Article  Google Scholar 

  • Gonzalez WD, Joselyn JA, Kamide Y, Kroehl HW, Rostoker G, Tsurutani BT, Vasyliunas VN (1994) What is a geomagnetic storm? J Geophys Res 99:5771

    Article  Google Scholar 

  • Gumarova L, Cornélissen G, Hillman D, Halberg F (2013) Geographically selective assortment of cycles in pandemics: meta-analysis of data collected by Chizhevsky. Epidemiol Infect 141(10):2173–2184. https://doi.org/10.1017/S0950268812002804

    Article  CAS  Google Scholar 

  • Gumarova L, Halberg F, Cornelissen G (2014) Effect of examination on the circadian structure of ECG parameters. World Heart J 6(1):13–20

    Google Scholar 

  • Halberg F et al (2006) Chronobiology’s progress. Part I, season’s appreciations 2004–2005: time-, frequency-, phase-, variable-, individual-, age- and site-specific chronomics. J Appl Biomed 4:1–38

    Google Scholar 

  • Haurwitz MW, Brier GW (1981) A critique of the superposed epoch analysis method: Its application to solar-weather relations. Mon Weather Rev 109(10):2074–2079

    Article  Google Scholar 

  • Hutchinson J, Wright D, Milan S (2011) Geomagnetic storms over the last solar cycle: a superposed epoch analysis. J Geophys Res. https://doi.org/10.1029/2011JA016463

  • Kleimenova NG, Kozyreva OV, Breus TK, Rapoport SI (2008) Seasonal variations in myocardial infarctions and the possible biotropic influence of short-period geomagnetic pulsations on the human cardiovascular system. Biophysics 52(6):625–631. https://doi.org/10.1134/S0006350907060152

    Article  Google Scholar 

  • Lilliefors HW (1969) On the Kolmogorov-Smirnov test for the exponential distribution with mean unknown. J Am Stat Assoc 64:387–389

    Article  Google Scholar 

  • Mass CF, Portman DA (1989) Major volcanic eruptions and climate: a critical evaluation. J Clim 2:566–593. https://doi.org/10.1175/1520-0442(1989)002<0566:MVEACA>2.0.CO;2

    Article  Google Scholar 

  • Mavromichalaki H, Papailiou M, Dimitrova S, Babayev ES, Loucas P (2012) Space weather hazards and their impact on human cardio-health state parameters on Earth. Nat Hazards 64(2):1447–1459. https://doi.org/10.1007/s11069-012-0306-2

    Article  Google Scholar 

  • Mitsutake G, Otsuka K, Oinuma S, Ferguson I, Cornélissen G, Wanliss J, Halberg F (2004) Does exposure to an artificial ULF magnetic field affect blood pressure, heart rate variability and mood? Biomed Pharmacother 58(Suppl 1):S20–S27. https://doi.org/10.1016/S0753-3322(04)80004-0

    Article  Google Scholar 

  • Otsuka K et al (2003) Chronomics for chronoastrobiology with immediate spin-offs for life quality and longevity. Biomedicine & Pharmacotherapy Vol. 57(Suppl. 1):1–18. https://doi.org/10.1016/j.biopha.2003.08.018

    Google Scholar 

  • Politis DN, White H, Patton AJ (2009) Correction: automatic block-length selection for the dependent bootstrap. Econ Rev 28(4):372–375

    Article  Google Scholar 

  • Rao MP et al (2017) European and Mediterranean hydroclimate responses to tropical volcanic forcing over the last millennium. Geophys Res Lett 44:5104–5112. https://doi.org/10.1002/2017GL073057

    Article  Google Scholar 

  • Singh, Y, Badruddin, P (2006). Statistical considerations in superposed epoch analysis and its applications in space research. J. Atmos. Solar-Terr. Phys. 68:803-813, doi:10.1016/j.jastp.2006.01.007.

  • Swetnam TW, Betancourt JL (1990) Fire-southern oscillation relations in the southwestern United States. Science 24:1017–1020

    Article  Google Scholar 

  • Vichare G, Alex S, Lakhina GS (2005) Some characteristics of intense geomagnetic storms and their energy budget. J Geophys Res 110:A03204. https://doi.org/10.1029/2004JA010418

    Google Scholar 

  • Wanliss JA (2005) Statistical precursors to space storm onset, in multiscale coupling of Sun-Earth Processes, edited by A. T. Y Lui, Y. Kamide and G. Consolini, Elsevier

  • Wanliss JA, Reynolds MA (2003) Measurement of the stochasticity of low-latitude geomagnetic temporal variations. Ann Geophys 21:1–6

    Article  Google Scholar 

  • Wanliss JA, Showalter KM (2006) High-resolution global storm index: Dst versus SYM-H. J Geophys Res 111:A02202. https://doi.org/10.1029/2005JA011034

    Article  Google Scholar 

  • Yokoyama, N, Kamide Y (1997), Statistical nature of geomagnetic storms, J. Geophys. Res., 102(A7), 14215–14222, doi:10.1029/97JA00903

  • Zhang J-C, Liemohn MW, Kozyra JU, Thomsen MF, Elliott HA, Weygand JM (2006) A statistical comparison of solar wind sources of moderate and intense geomagnetic storms at solar minimum and maximum. J Geophys Res 111:A01104. https://doi.org/10.1029/2005JA011065

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Wanliss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanliss, J., Cornélissen, G., Halberg, F. et al. Superposed epoch analysis of physiological fluctuations: possible space weather connections. Int J Biometeorol 62, 449–457 (2018). https://doi.org/10.1007/s00484-017-1453-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1453-7

Keywords

Navigation