International Journal of Biometeorology

, Volume 61, Issue 12, pp 2097–2110 | Cite as

Climate threats on growth of rear-edge European beech peripheral populations in Spain

  • I. Dorado-LiñánEmail author
  • L. Akhmetzyanov
  • A. Menzel
Original Paper


European beech (Fagus sylvatica L.) forests in the Iberian Peninsula are a clear example of a temperate forest tree species at the rear edge of its large distribution area in Europe. The expected drier and warmer climate may alter tree growth and species distribution. Consequently, the peripheral populations will most likely be the most threatened ones. Four peripheral beech forests in the Iberian Peninsula were studied in order to assess the climate factors influencing tree growth for the last six decades. The analyses included an individual tree approach in order to detect not only the changes in the sensitivity to climate but also the potential size-mediated sensitivity to climate. Our results revealed a dominant influence of previous and current year summer on tree growth during the last six decades, although the analysis in two equally long periods unveiled changes and shifts in tree sensitivity to climate. The individual tree approach showed that those changes in tree response to climate are not size dependent in most of the cases. We observed a reduced negative effect of warmer winter temperatures at some sites and a generalized increased influence of previous year climatic conditions on current year tree growth. These results highlight the crucial role played by carryover effects and stored carbohydrates for future tree growth and species persistence.


European beech Tree growth Peripheral populations Rear edge Climate change 



The authors want to thank Elena Muntán Bordás and Elisabet Martínez Sancho for their valuable assistance during the field campaign. We also want to thank the Natural Parks of Montejo de la Sierra, Tejera Negra, Montseny, and Els Ports for providing sampling permission and support to our research. This study was financially supported by the MARGINS Project funded by the Bavarian State Forest Authority. IDL was partially supported by the project BOSSANOVA (S2013/MAE-2760). AM acknowledges funding provided by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no [282250] and support of the Technische Universität München – Institute for Advanced Study, funded by the German Excellence Initiative.

Supplementary material

484_2017_1410_MOESM1_ESM.docx (430 kb)
Supplementary Figure 1 (DOCX 430 kb).
484_2017_1410_MOESM2_ESM.docx (150 kb)
Supplementary Figure 2 (DOCX 150 kb).
484_2017_1410_MOESM3_ESM.docx (211 kb)
Supplementary Figure 3 (DOCX 211 kb).


  1. Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH, Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Forest Ecol Manag 259(4):660–684. doi: 10.1016/j.foreco.2009.09.001 CrossRefGoogle Scholar
  2. Andrade C, Leite SM, Santos JA (2012) Temperature extremes in Europe: overview of their driving atmospheric patterns. Nat Hazard Earth Sys 12:1671–1691CrossRefGoogle Scholar
  3. Aranda I, Gil L, Pardos JA (2000) Water relations and gas exchange in Fagus sylvatica L. and Quercus petraea (Mattuschka) Liebl. in a mixed stand at their southern limit of distribution in Europe. Trees-Struct Funct 14:344–352CrossRefGoogle Scholar
  4. Barbaroux C, Bréda N (2002) Contrasting distribution and seasonal dynamics of carbohydrate reserves in stem wood of adult ringporous sessile oak and diffuse-porous beech trees. Tree Physiol 22:1201–1210CrossRefGoogle Scholar
  5. Beniston M, Stephenson DB, Christensen O, Ferro C, Frei C, Goyette S, Halsnaes K, Holt T, Jylhä K, Koffi B, Palutikof J, Schöll R, Semmler T, Woth K (2007) Future extreme events in European climate: an exploration of regional climate model projections. Clim Chang 81:71–95CrossRefGoogle Scholar
  6. Bolós O (1983) La vegetacio del Montseny. Diputacio de Barcelona, BarcelonaGoogle Scholar
  7. Bréda N, Roland H, Granier A, Dreyer E (2006) Temperate forest trees and stands under severe drought: a review of ecophysiological responses, adaptation processes and longterm consequences. Ann For Sci 63:625–644CrossRefGoogle Scholar
  8. Briffa KR, van der Schrier G, Jones PD (2009) Wet and dry summers in Europe since 1750: evidence of increasing drought. Int J Climatol 29:1894–1905CrossRefGoogle Scholar
  9. Brunet M, Jones PD, Sigró J, Saladié O, Aguilar E, Moberg A, Della-Marta PM, Lister D, Walther A, López D (2007) Temporal and spatial temperature variability and change over Spain during 1850–2005. J Geophys Res 112:D12117. doi: 10.1029/2006JD008249 CrossRefGoogle Scholar
  10. Büntgen U, Martinez-Peña F, Aldea J, Rigling A, Fischer EM, Camarero JJ, Hayes MJ, Fatton V, Egli S (2013) Declining pine growth in Central Spain coincides with increasing diurnal temperature range since the 1970s. Glob Planet Chang 107:177–185CrossRefGoogle Scholar
  11. Bunn AG (2008) A dendrochronology program library in R (dplR). Dendrochronologia 26(2):115–124CrossRefGoogle Scholar
  12. Bugmann H, Pfister C (2000) Impacts of interannual climate variability on past and future forest composition. Reg Environ Chang 3(4):112–125Google Scholar
  13. Canty A, Ripley B (2016) boot: Bootstrap R (S-Plus) Functions. R package version 1.3–18Google Scholar
  14. Carrer M, Urbinati M (2004) Age-dependent tree-ring growth responses to climate in Larix decidua and Pinus cembra. Ecology 85(3):730–740CrossRefGoogle Scholar
  15. Carrer M (2011) Individualistic and time-varying tree-ring growth to climate sensitivity. PLoS One 6(7). doi: 10.1371/journal.pone.0022813
  16. Cailleret M, Davi H (2011) Effects of climate on diameter growth of co-occurring Fagus sylvatica and Abies alba along an altitudinal gradient. Trees 25(2):265–276. doi: 10.1007/s00468-010-0503-0 CrossRefGoogle Scholar
  17. Cavin L, Jump AS (2017) Highest drought sensitivity and lowest resistance to growth suppression are found in the range core of the tree Fagus sylvatica L. not the equatorial range edge. Glob Change Biol 23(1):362–379CrossRefGoogle Scholar
  18. Christensen JH, Hewitson B, Busuioc A, Busuioc A, Chen A, Gao X, Held R, ,Jones R, Kolli RK, Kwon WK, Laprise R, Magana Rueda V, Mearns L, Menendez CG, Räisänen J, Rinke A, Sarr A, Whetton P, Arritt R, Benestad R, Beniston M, Bromwich D, Caya D, Comiso J, de Elia R, Dethloff K (2007) Regional climate projections. In climate change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. M Tignor, HL Miller, Solomon S, D Qin, M Manning, Z Chen, M Marquis, KB Averyt (Ed.) Cambridge University Press, CambridgeGoogle Scholar
  19. Ciais P, Reichstein M, Viovy N, Granier A, Ogee J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A, Chevallier F, Noblet ND, Friend AD, Friedlingstein P, Grünwald T, Heinesch B, Keronen P, Knohl A, Krinner G, Loustau D, Manca G, Matteucci G, Miglietta F, Ourcival JM, Papale D, Pilegaard K, Rambal S, Seufert G, Soussana JF, Sanz MJ, Schulze ED, Vesala T, Valentini R (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Science 437:529–533Google Scholar
  20. Cochard H, Lemoine D, Améglio T, Granier A (2001) Mechanisms of xylem recovery from winter embolism in Fagus sylvatica. Tree Physiol 21:27–33CrossRefGoogle Scholar
  21. Cook ER, Kairiukstis LA (1990) Methods of dendrochronology: applications in the environmental sciences. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  22. Czúcz B, Gálhidy L, Mátyás C (2011) Present and forecasted xeric climatic limits of beech and sessile oak distribution at low altitudes in Central Europe. Ann Forest Sci 68:99–108CrossRefGoogle Scholar
  23. D'Arrigo R, Wilson R, Liepert B, Cherubini P (2008) On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob Planet Chang 60:289–305CrossRefGoogle Scholar
  24. Della-Marta PM, Luterbacher J, von Weissenfluh H, Xoplaki E, Brunet M, Wanner H (2007) Summer heat waves over the western Europe 1880-2003, their relationship to large scale forcing and predictability. Clim Dyn 29:251–275CrossRefGoogle Scholar
  25. Di Filippo A, Biondi F, Cufar K, de Luis M, Grabner M, Maugeri M, Presutti Saba E, Schirone B, Piovesan G (2007) Bioclimatology of beech (Fagus sylvatica L.) in the Eastern Alps: spatial and altitudinal climatic signals identified through a tree-ring network. J Biogeogr 34:1873–1892CrossRefGoogle Scholar
  26. Di Filippo A, Pederson N, Baliva M, Brunetti M, Dinella A, Kitamura K, Knapp HD, Schirone B, Piovesan G (2015) The longevity of broadleaf deciduous trees in Northern Hemisphere temperate forests: insights from tree-ring series. Front Ecol Evol. doi: 10.3389/fevo.2015.00046
  27. Dorado Liñán I, Gutiérrez E, Heinrich I, Andreu-Hayles L, Muntán E, Campelo F, Helle G (2012) Age effects and climate response in trees: a multi-proxy tree-ring test in old-growth life stages. Eur J For Res 131(4):933–944CrossRefGoogle Scholar
  28. Epron D, Dreyer E (1990) Stomatal and non stomatal limitation of photosynthesis by leaf water deficits in three oak species: a comparison of gas exchange and chlorophyll a fluorescence data. Ann For Sci 47:435–450CrossRefGoogle Scholar
  29. Esper J, Frank DC (2009) Divergence pitfalls in tree-ring research. Clim Chang 94:261–266CrossRefGoogle Scholar
  30. Falk W, Hempelmann N (2013) Species favourability shift in Europe due to climate change: a case study for Fagus sylvatica L. and Picea abies (L.) Karst. based on an ensemble of climate models. J Climatol. doi: 10.1155/2013/787250
  31. Galiano L, Martínez-Vilalta J, Lloret F (2010) Drought-induced multifactor decline of Scots pine in the Pyrenees and potential vegetation change by the expansion of co-occurring oak species. Ecosystems 13:978–991CrossRefGoogle Scholar
  32. Gates DM (1993) Climate change and its biological consequences. Sinauer, Sunderland, MA 280 ppGoogle Scholar
  33. Geßler A, Keitel C, Kreuzwieser J, Matyssek R, Seiler W, Rennenberg H (2006) Potential risks for European beech (Fagus sylvatica L.) in a changing climate. Trees 21(1):1–11Google Scholar
  34. Gil L, Náger JA, Aranda García I, González Doncel I, Gonazalo Jiménez J, López de Heredia U, Millerón M, Nanos N, Perea García-Calvo R, Rodríguez Calcerrada J, Valbuena Carabaña M (2010) El Hayedo del Montejo: una gestión sostenible. Comunidad de Madrid. (eds): Dirección General del Medio Ambiente, Madrid, pp 151Google Scholar
  35. Giorgi F, Lionello P (2008) Climate change projections for the Mediterranean region. Glob Planet Chang 63:90–104CrossRefGoogle Scholar
  36. Gómez-Aparicio L, Garcia-Valdes R, Ruiz-Benito P, Zavala MA (2011) Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: implications for forest management under global change. Glob Change Biol 17:2400–2414CrossRefGoogle Scholar
  37. Gutierrez E (1988) Dendroecological study of Fagus sylvatica L. in the Montseny mountains (Spain). Acta Oecol 9:301–309Google Scholar
  38. Hacket-Pain AJ, Friend AD, Lageard JGA, Thomas PA (2015) The influence of masting phenomenon on growth-climate relationships in trees: explaining the influence of previous summers’ climate on ring width. Tree Physiol 35:319–330CrossRefGoogle Scholar
  39. Hampe A, Petit RJ (2005) Conserving biodeversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefGoogle Scholar
  40. Hartmann DL, Klein Tank AMG, Rusticucci M, Alexander LV, Brönnimann S, Charabi Y, Dentener FJ, Dlugokencky EJ, Easterling DR, Kaplan A, Soden BJ, Thorne PW, Wild M, Zhai PM (2013) Observations: Atmosphere and Surface. In: climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USAGoogle Scholar
  41. Haylock MR, Hofstra N, AMG KT, Klok EJ, Jones PD, New M (2008) A European daily high-resolution gridded dataset of surface temperature and precipitation. J Geophys Res-Atmos 113:D20119. doi: 10.1029/2008JD10201 CrossRefGoogle Scholar
  42. Hijmans R, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  43. Hoerling M, Eischeid J, Perlwitz J, Quan X, Zhang T, Pegion P (2012) On the increased frequency of Mediterranean drought. J Clim 25:2146–2161CrossRefGoogle Scholar
  44. Holmes RL (1983) Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bulletin 43:69–78Google Scholar
  45. IPCC, 2013: Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324
  46. Jump AS, Hunt JM, Peñuelas J (2006) Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob Chang Biol 12:2163–2174CrossRefGoogle Scholar
  47. Kampstra P (2008) Beanplot: A boxplot alternative for visual comparison of distributions. J Stat Softw 28: Code Snippet 1Google Scholar
  48. La Marche VC Jr (1973) Holocene climatic variations inferred from treeline fluctuations in the White Mountains, California. Quat Res 3:632–660CrossRefGoogle Scholar
  49. Lebourgeois F, Bréda N, Ulrich E, Granier A (2005) Climate-tree-growth relationships of European beech (Fagus sylvatica L.) in the French Permanent Plot Network (RENECOFOR). Trees-Struct Funct 19:385–401CrossRefGoogle Scholar
  50. Lendzion J, Leuschner C (2008) Growth of European beech (Fagus sylvatica L.) saplings is limited by elevated atmospheric vapour pressure deficits. Forest Ecol Manag 256:648–655CrossRefGoogle Scholar
  51. Linares JC, Tiscar PA, Camarero JJ, Taïqui L, Viñegla, B, Seco JI, Merino J, Carreira J.A. (2011a) Tree growth decline on relict Western-Mediterranean mountain forests: causes and impacts. In Forest decline: causes and impacts. Editors: Jushua A. Jenkins, ISBN 978-1-61470-002-9. Nova Science Publishers, Inc, pp 91–110Google Scholar
  52. Linares JC, Carreira JA, Ochoa V (2011b) Human impacts drive forest structure and diversity. Insights from Mediterranean mountain forest dominated by Abies pinsapo (Boiss.). Eur J For Res 130(4):533–542. doi: 10.1007/s10342-010-0441-9
  53. Luterbacher J, García-Herrera R, Akcer-Onc S, Allan R, Alvarez-Castro MC, Benito G, Booth J, Büntgen U, Cagatay N, Colombaroli D, Davis B, Esper J, Felis T, Fleitmann D, Frank D, Gallego D, Garcia-Bustamante E, Glaser R, Gonzalez-Rouco JF, Goosse H, Kiefer T, Macklin MG, Manning SW, Montagna P, Newman L, Power MJ, Rath V, Ribera P, Riemann D, Roberts N, Sicre MA, Silenzi S, Tinner W, Tzedakis PC, Valero-Garcés B, van der Schriera G, Vannièrea B, Vogo S, Wannera H, Werner JP, Willett G, Williamsa MH, Xoplaki E, Zerefosa CS, Zorita E (2012) A review of 2000 years of paleoclimatic evidence in the Mediterranean. The climate of the Mediterranean region: from the past to the future. Elsevier, Amsterdam, The Netherlands, pp 87–185Google Scholar
  54. Luterbacher J, Dietrich D, Xoplaki E, Grosjean M, Wanner H (2004) European seasonal and annual temperature variability, trends, and extremes since 1500. Science 303:1499–1503CrossRefGoogle Scholar
  55. Luterbacher J et al (2006) Mediterranean climate variability over the last centuries: A review. In: Lionello P, Malanotte-Rizzoli P, and Boscolo R (eds), The Mediterranean Climate: an overview of the main characteristics and issues. Elsevier, Amsterdam, pp 27-148Google Scholar
  56. Mariotti A (2010) Recent changes in Mediterranean water cycle: a pathway toward long-term regional hydroclimatic change? J Clim 23:1513–1525CrossRefGoogle Scholar
  57. McDowell NG (2011) Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol 155(3):1051–1059Google Scholar
  58. McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178(4):719–739. doi: 10.1111/j.1469-8137.2008.02436.x CrossRefGoogle Scholar
  59. Mérian P, Lebourgeois F (2011) Size-mediated climate–growth relationships in temperate forests: a multi-species analysis. Forest Ecol Manag 261:1382–1391CrossRefGoogle Scholar
  60. Moberg A, Jones PD, Lister D, Walther A, Alexander L, Brunet M, Chen D, Della-Marta P, Jacobeit J, Luterbacher J, Yiou P, Klein Tank AHA, Almarza C, Auer I, Barriendos M, Bergström H, Böhm R, Butler J, Caesar J, Drebs A, Pandzic K, Petrakis M, Srnec L, Tolasz R, Tuomenvirta H, Werner PC, Wanner H, Xoplaki E (2006) Indices for daily temperature and precipitation extremes in Europe analyzed for the period 1901–2000. J Geophys Res 111:D22106. doi: 10.1029/2006JD007103 CrossRefGoogle Scholar
  61. Pardo F, Gil L, Pardos JA (1997) Field study of beech (Fagus sylvatica L.) and melojo oak (Quercus pyrenaica Willd) leaf litter decomposition in the centre of the Iberian Peninsula. Plant Soil 191:89–100CrossRefGoogle Scholar
  62. Pardo F (2000). Caracterización de rodales arbolados del “Hayedo de Montejo”: estructura, composición e incorporación de la hojarasca al suelo, Ph.D. thesis, Universidad Politécnica, MadridGoogle Scholar
  63. Pardo F, Gil L, Pardos JA (2004) Structure and composition of pole-stage stand developed in an ancient wood pasture in central Spain. Forestry 77:67–74CrossRefGoogle Scholar
  64. Parmesan C (1996) Climate and species range. Nature 382:765–766CrossRefGoogle Scholar
  65. Peñuelas J, Boada M (2003) A global change-induced biome shift in the Montseny mountains (NE Spain). Glob Chang Biol 9:131–140CrossRefGoogle Scholar
  66. Peñuelas J, Ogaya R, Boada M, Jump AS (2007) Migration, invasion and decline: changes in recruitment and forest structure in a warming-linked shift of European beech forest in Catalonia (NE Spain). Ecography 30:829–837CrossRefGoogle Scholar
  67. Peñuelas J, Hunt JM, Ogaya R, Jump A (2008) Twentieth century changes of tree-ring δ13C at the southern range-edge of Fagus sylvatica: increasing water-use efficiency does not avoid the growth decline induced by warming at low altitudes. Glob Chang Biol 14:1076–1088CrossRefGoogle Scholar
  68. Perkins SE, Alexander LV, Nairn JR (2012) Increasing frequency, intensity and duration of observed heatwaves and warm spells. Geophys Res Lett 39:L20714. doi: 10.1029/2012GL053361 CrossRefGoogle Scholar
  69. Piutti E, Cescatti A (1997) A quantitative analysis of the interactions between climatic response and intraspecific competition in European beech. Can J For Res 27:1277–1284CrossRefGoogle Scholar
  70. R Core Team (2015) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  71. Rasche L, Fahse L, Zingg A, Bugmann H (2012) Enhancing gap model accuracy by modeling dynamic height growth and dynamic maximum tree height. Ecol Model 232:133–143CrossRefGoogle Scholar
  72. Reid PC, Hari RE, Beaugrand G, Livingstone DM, Marty C, Straile D, Barichivich J, Goberville E, Adrian R, Aono Y, Brown R, Foster J, Groisman P, Hélaouët P, Hsu HH, Kirby R, Knight J, Kraberg A, Li J, Lo TT, Myneni RB, North RP, Pounds JA, Sparks T, Stübi R, Tian Y, Wiltshire KH, Xiao D, Zhu Z (2016) Global impacts of the 1980s regime shift. Glob Chang Biol 22:682–703CrossRefGoogle Scholar
  73. Rozas V (2001) Detecting the impact of climate and disturbances on tree -rings on Fagus sylvatica L. and Quercus robur L. in the lowland forest in Cantabria, Northern Spain. Ann For Sci 58:237–251CrossRefGoogle Scholar
  74. Rozas V (2015) Individual-based approach as a useful tool to disentangle the relative importance of tree age, size and inter-tree competition in dendroclimatic studies. iForest—Biogeosciences Forestry 8:187–194Google Scholar
  75. Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775CrossRefGoogle Scholar
  76. Salzer MW, Larson ER, Bunn AG, Hughes MK (2014) Changing climate response in near-treeline bristlecone pine with elevation and aspect. Environ Res Lett 9:114007. doi: 10.1088/1748-9326/9/11/114007 CrossRefGoogle Scholar
  77. Sanchez-Lorenzo A, Brunetti M, Calbó J, Martin-Vide J (2007) Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set. J Geophys Res-Atmos 112(D20):27. doi: 10.1029/2007JD008677 CrossRefGoogle Scholar
  78. Sanchez-Lorenzo A, Wild M, Trentmann J (2013) Validation and stability assessment of the monthly mean CM SAF surface solar radiation data set over Europe against a homogenized surface dataset (1983-2005). Remote Sensing Environment 134:355–366CrossRefGoogle Scholar
  79. Scartazza A, Brugnoli E, Battistelli A, Moscatello S, Matteucci G (2013) Seasonal and inter-annual dynamics of growth, non-structural carbohydrates and C stable isotopes in a Mediterranean beech forest. Tree Physiol 33:730–742CrossRefGoogle Scholar
  80. Simard S, Giovannelli A, Treydte K, Traversi ML, King GM, Frank D, Fonti P (2013) Intra-annual dynamics of non-structural carbohydrates in the cambium of mature conifer trees reflects radial growth demands. Tree Physiol 33:913–923CrossRefGoogle Scholar
  81. Sousa P, Trigo RM, Aizpurua P, Nieto R, Gimeno L, Garcia-Herrera R (2011) Trends and extremes of drought indices throughout the 20th century in the Mediterranean. Nat Hazard Earth Sys 11:33–51. doi: 10.5194/nhess-11-33-2011 CrossRefGoogle Scholar
  82. Sperry JS, Sullivan JEM (1992) Xylem embolism in response to freeze–thaw cycles and water stress in ring-porous, diffuse-porous, and conifer species. Plant Physiol 100:605–613CrossRefGoogle Scholar
  83. Stokes MA, Smiley TL (1968) An introduction to tree-ring dating. University of Arizona Press, Tucson, AZ pp73Google Scholar
  84. Thuiller W, Richardson DM, Pysek P, Midgley GF, Hughes GO, Rouget M (2005) Niche-based modelling as a tool for predicting the risk of alien plant invasions at a global scale. Glob Chang Biol 11:2234–2250CrossRefGoogle Scholar
  85. Vicente-Serrano SM, Beguería S, López-Moreno JI (2010) A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index. J Clim 23:1696–1718CrossRefGoogle Scholar
  86. Wigley TML, Briffa KR, Jones PD (1984) On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J Clim Appl Meteorol 23(2):201–213CrossRefGoogle Scholar
  87. Woodward FI (1987) Climate and plant distribution. Cambridge University Press, Cambridge pp188Google Scholar
  88. Zimmermann NE, Yoccoz NG, Edwards TC, Meier ES, Thuiller W, Guisan A, Schmatz DR, Pearman PB (2009) Climatic extremes improve predictions of spatial patterns of tree species. PNAS 106:19723–19728CrossRefGoogle Scholar

Copyright information

© ISB 2017

Authors and Affiliations

  • I. Dorado-Liñán
    • 1
    • 2
    Email author
  • L. Akhmetzyanov
    • 2
    • 3
  • A. Menzel
    • 2
    • 4
  1. 1.Forest Research CentreInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CIFOR)MadridSpain
  2. 2.Ecoclimatology, Technische Universität MünchenFreisingGermany
  3. 3.Forest Ecology and Forest Management GroupWageningen UniversityWageningenThe Netherlands
  4. 4.Institute for Advanced StudyTechnische Universität MünchenGarchingGermany

Personalised recommendations