Skip to main content

Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases

Abstract

The seasonal variability of certain non-allergic respiratory diseases is not clearly understood. Analysis of the breath condensate, the liquid that can be collected by breathing into a cold tube, has been proposed to bring closer to the understanding of airway pathologies. It has been assumed, that (1) airway lining fluid was a stable body liquid and (2) the breath condensate samples were representative of the airway lining fluid. Research was focussed on the identification of biomarkers indicative of respiratory pathologies. Despite 30 years of extended investigations breath condensate analysis has not gained any clinical implementation so far. The pH of the condensate is the characteristic that can be determined with the highest reproducibility. The present paper shows, that contrary to the initial assumptions, breath condensate is not a representative of the airway lining fluid, and the airway lining fluid is not a stable body liquid. Condensate pH shows baseline variability and it is influenced by drinking and by the ambient temperature. The changes in condensate pH are linked to changes in airway lining fluid pH. The variability of airway lining fluid pH may explain seasonal incidence of certain non-allergic respiratory diseases such as the catching of a common cold and the increased incidence of COPD exacerbations and exercise-induced bronchoconstriction in cold periods.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • Abe T, Tokuda Y, Ohde S, Ishimatsu S, Nakamura T, Birrer RB (2009) The relationship of short-term air pollution and weather to ED visits for asthma in Japan. Am J Emerg Med 27:153–159

    Article  Google Scholar 

  • Accordino R, Visentin A, Bordin A, Ferrazzoni S, Marian E, Rizzato F, Canova C, Venturini R, Maestrelli P (2008) Long-term repeatability of exhaled breath condensate pH in asthma. Respir Med 102:377–381

    Article  Google Scholar 

  • Antus B, Barta I (2012) Exhaled breath condensate pH in patients with lung cancer. Lung Cancer 75:178–180

    Article  Google Scholar 

  • Antus B, Barta I, Kullmann T, Lazar Z, Valyon M, Horváth I, Csiszér E (2010) Assessment of exhaled breath condensate pH in exacerbations of asthma and chronic obstructive pulmonary disease: a longitudinal study. Am J Respir Crit Care Med 182:1492–1497

    Article  Google Scholar 

  • Antus B, Barta I, Csiszér E, Kelemen K (2012) Exhaled breath condensate pH in patients with cystic fibrosis. Inflamm Res 61:1141–1147

    CAS  Article  Google Scholar 

  • Bikov A, Horvath I (2016) Methodological issues and possible clinical implications for exhaled breath condensate pH in asthma. Curr Top Med Chem 16:1550–1560

    CAS  Article  Google Scholar 

  • Cancado JE, Mendes ES, Arana J, Horvath G, Monzon ME, Salathe M, Wanner A (2015) Effect of airway acidosis and alkalosis on airway vascular smooth muscle responsiveness to albuterol. BMC Pharmacol Toxicol 16:9. doi:10.1186/s40360-015-0008-y

    Article  Google Scholar 

  • Cáp P, Pehal F, Chládek J, Malý M (2005) Analysis of exhaled leukotrienes in nonasthmatic adult patients with seasonal allergic rhinitis. Allergy 60:171–176

    Article  Google Scholar 

  • Clary-Meinesz C, Mouroux J, Cosson J, Huitorel P, Blaire B (1998) Influence of external pH on ciliary beat frequency in human bronchi and bronchioles. Eur Respir J 11:330–333

    CAS  Article  Google Scholar 

  • Davis MD, Montpetit A, Hunt J (2012) Exhaled breath condensate: an overview. Immunol Allergy Clin N Am 32:363–375

    Article  Google Scholar 

  • Dut R, Dizdar EA, Birben E, Sackesen C, Soyer OU, Besler T, Kalayci O (2008) Oxidative stress and its determinants in the airways of children with asthma. Allergy 63:1605–1609

    CAS  Article  Google Scholar 

  • Effros RM, Hoagland KW, Bosbous M, Castillo D, Foss B, Dunning M, Gare M, Lin W, Sun F (2002) Dilution of respiratory solutes in exhaled condensates. Am J Respir Crit Care Med 165:663–669

    Article  Google Scholar 

  • Hallstrand TS, Altemeier WA, Aitken ML, Henderson WR Jr (2013) Role of cells and mediators in exercise-induced bronchoconstriction. Immunol Allergy Clin N Am 33:313–328

    Article  Google Scholar 

  • Hatch GE (1992) Comparative biochemistry of airway lining fluid. In: Parent RA, Raton B (eds) Comparative biology of the normal lung, Florida, pp 617–632

  • Ho WC, Hartley WR, Myers L, Lin MH, Lin YS, Lien CH, Lin RS (2007) Air pollution, weather and associated risk factors related to asthma prevalence and attack rate. Environ Res 104:402–409

    CAS  Article  Google Scholar 

  • Holloway JW, Savarimuthu Francis S, Fong KM, Yang IA (2012) Genomics and the respiratory effects of air pollution exposure. Respirology 17:590–600

    Article  Google Scholar 

  • Horváth I, Hunt J, Barnes PJ (2005) Exhaled breath condensate: methodological recommendations and unresolved questions. ATS/ERS task force. Eur Respir J 26:523–548

    Article  Google Scholar 

  • Hunt JF, Fang K, Malik R, Snyder A, Malkotra N, Platts-Mills TAE, Gaston B (2000) Endogenous airway acidification: implications for asthma pathophysiology. Am J Resp Crit Care Med 161:694–699

    CAS  Article  Google Scholar 

  • Ko FW, Chan KP, Hui DS, Goddard JR, Shaw JG, Reid DW, Yang IA (2016) Acute exacerbation of COPD. Respirology 21:1152–1165

    Article  Google Scholar 

  • Konstantinidi EM, Lappas AS, Tzortzi AS, Behrakis PK (2015) Exhaled breath condensate: technical and diagnostic aspects. ScientificWorldJournal. doi:10.1155/2015/435160

  • Kostikas K, Papatheodorou G, Ganas K, Psathakis K, Panagou P, Loukides S (2002) pH in expired breath condensate of patients with inflammatory airway diseases. Am J Respir Crit Care Med 165:1364–1370

    Article  Google Scholar 

  • Kullmann T, Barta I, Zs L, Szili B, Barat E, Valyon M, Kollai M, Horvath I (2007) Exhaled breath condensate pH standardised for CO2 partial pressure. Eur Respir J 29:496–501

    CAS  Article  Google Scholar 

  • Kullmann T, Barta I, Antus B, Horváth I (2008a) Drinking influences exhaled breath condensate acidity. Lung 186:263–268

    CAS  Article  Google Scholar 

  • Kullmann T, Barta I, Antus B, Valyon M, Horvath I (2008b) Environmental temperature and relative humidity influence exhaled breath condensate pH. Eur Respir J 31:474–475

    CAS  Article  Google Scholar 

  • Maestrelli P, Canova C, Scapellato ML, Visentin A, Tessari R, Bartolucci GB, Simonato L, Lotti M (2011) Personal exposure to particulate matter is associated with worse health perception in adult asthma. J Investig Allergol Clin Immunol 21:120–128

    CAS  Google Scholar 

  • Makra L, Sz T, Bálint B, Sümeghy Z, Sánta T, Hirsch T (2008) Influences of meteorological parameters and biological and chemical air pollutants to the incidence of asthma and rhinitis. Clim Res 37:99–119

    Article  Google Scholar 

  • Oliveira-Santos M, Santos JA, Soares J, Dias A, Quaresma M (2016) Influence of meteorological conditions on RSV infection in Portugal. Int J Biometeorol 60:1807–1817

    CAS  Article  Google Scholar 

  • Royston L, Tapparel C (2016) Rhinoviruses and respiratory enteroviruses: not as simple as ABC. Viruses. doi:10.3390/v8010016

  • Son JY, Bell ML, Lee JT (2014) The impact of heat, cold, and heat waves on hospital admissions in eight cities in Korea. Int J Biometeorol 58:1893–1903

    Article  Google Scholar 

  • Soter S, Kelemen K, Barta I, Valyon M, Csiszér E, Antus B (2011) Exhaled breath condensate pH in lung transplant recipients with bronchiolitis obliterans syndrome. Transplantation 91:793–797

    Google Scholar 

  • Tate S, MacGregor G, Davis M, Innes JA, Greening AP (2002) Airways in cystic fibrosis are acidified: detection by exhaled breath condensate. Thorax 57:926–929

    CAS  Article  Google Scholar 

  • Warwick G, Kotlyar E, Chow S, Thomas PS, Yates DH (2012) Exhaled breath condensate in pulmonary arterial hypertension. J Breath Res. doi:10.1088/1752-7155/6/3/036006

  • Yan DC, Chung FF, Lin SJ, Wan GH (2016) The relationships among Dermatophagoides pteronyssinus exposure, exhaled nitric oxide, and exhaled breath condensate pH levels in atopic asthmatic children. Medicine (Baltimore) 95. doi:10.1097/MD.0000000000004825

  • Yang IA, Holgate ST (2013) Air pollution and lung health: an epilogue. Respirology 18:3–4

    Article  Google Scholar 

  • Yang IA, Fong KM, Zimmerman PV, Holgate ST, Holloway JW (2008) Genetic susceptibility to the respiratory effects of air pollution. Thorax 63:555–563

    CAS  Google Scholar 

  • Yoda Y, Otani N, Sakurai S, Shima M (2014) Acute effects of summer air pollution on pulmonary function and airway inflammation in healthy young women. J Epidemiol 24:312–320

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Kullmann.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kullmann, T., Szipőcs, A. Variability of breath condensate pH may contribute to the better understanding of non-allergic seasonal respiratory diseases. Int J Biometeorol 61, 1703–1708 (2017). https://doi.org/10.1007/s00484-017-1397-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1397-y

Keywords

  • Exhaled breath condensate
  • Airway pathology
  • pH
  • Common cold
  • Asthma