Skip to main content
Log in

Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

RNA-Seq analysis was used to characterize transcriptome response of Holstein calves to thermal stress. A total of eight animals aged between 2 and 3 months were randomly selected and subjected to thermal stress corresponding to a temperature humidity index of 95 in an environmentally controlled house for 12 h consecutively for 3 days. A set of 15,787 unigenes were found to be expressed and after a threshold of threefold change, and a Q value <0.05; 502, 394, and 376 genes were found to be differentially expressed on days 1, 2, and 3 out of which 343, 261 and 256 genes were upregulated and 159, 133, and 120 genes were downregulated. Only 356 genes out of these were expressed on all 3 days, and only they were considered as significantly differentially expressed. KEGG pathway analysis revealed that ten pathways were significantly enriched; the top two among them were protein processing in endoplasmic reticulum and MAPK signaling pathways. These results suggest that thermal stress triggered a complex response in Holstein calves and the animals adjusted their physiological and metabolic processes to survive. Many of the genes identified in this study have not been previously reported to be involved in thermal stress response. The results of this study extend our understanding of the animal’s response to thermal stress and some of the identified genes may prove useful in the efforts to breed Holstein cattle with superior thermotolerance, which might help in minimizing production loss due to thermal stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson DH (2006) Role of lipids in the MAPK signaling pathway. Prog Lipid Res 45(2):102–119

    Article  CAS  Google Scholar 

  • Andrews SF, Fast Q (2015) A quality control tool for high throughput sequence data. 2010.

  • Armstrong DV (1994) Heat Stress Interaction with Shade and Cooling. J Dairy Sci 77(7):2044–2050

  • Basiricò L, Morera P, Primi V, Lacetera N, Nardone A, Bernabucci U (2011) Cellular thermotolerance is associated with heat shock protein 70.1 genetic polymorphisms in Holstein lactating cows. Cell Stress and Chaperones 16(4):441–448

    Article  Google Scholar 

  • Baumgard LH, Rhoads RP Jr (2013) Effects of heat stress on postabsorptive metabolism and energetics. Annu Rev Anim Biosci 1(1):311–337

    Article  Google Scholar 

  • Beede DK, Briceno JV, Staples CR (1987) Lactational performance of mid-lactation Holstein cows fed two diet types with varying contents of refined trona or sodium bicarbonate. J Dairy Sci 70(1):199

    Google Scholar 

  • Bernabucci U, Biffani S, Buggiotti L, Vitali A, Lacetera N, Nardone A (2014) The effects of heat stress in Italian Holstein dairy cattle. J Dairy Sci 97(1):471–486

    Article  CAS  Google Scholar 

  • Bhardwaj J, Chauhan R, Swarnkar MK, Chahota RK, Singh AK, Shankar R, Yadav SK (2013) Comprehensive transcriptomic study on horse gram (Macrotyloma uniflorum): de novo assembly, functional characterization and comparative analysis in relation to drought stress. BMC Genomics 14(1):1

    Article  Google Scholar 

  • Bohmanova J, Misztal I, Cole JB (2007) Temperature-Humidity Indices as Indicators of Milk Production Losses due to Heat Stress. J Dairy Sci 90(4):1947–1956

    Article  CAS  Google Scholar 

  • Boo KO, Kwon WT, Kim JK (2004) Vegetation change in the regional surface climate over East Asia due to global warming using BIOME4. Nuovo Cimento C 27:317

    Google Scholar 

  • Boo KO, Kwon WT, Baek HJ (2006) Change of extreme events of temperature and precipitation over Korea using regional projection of future climate change. Geophys Res Lett 33(1)

  • Buzanskas M Genome-wide association study on long-yearling scrotal circumference in canchim cattle. In: 10th World Congress on Genetics Applied to Livestock Production, 2014. Asas,

  • Charoensook R, Gatphayak K, Sharifi AR, Chaisongkram C, Brenig B, Knorr C (2012) Polymorphisms in the bovine HSP90AB1 gene are associated with heat tolerance in Thai indigenous cattle. Trop Anim Health Prod 44(4):921–928

    Article  Google Scholar 

  • Collier JL, Abdallah MB, Hernandez LL, Norgaard JV, Collier RJ (2007) Prostaglandins A1 (PGA1) and E1 (PGE1) alter heat chock protein 70 (HSP-70) gene expression in bovine mammary epithelial cells (BMEC). Journal of Animal Science

  • Collier RJ, Collier JL, Rhoads RP, Baumgard LH (2008) Invited review: genes involved in the bovine heat stress response. J Dairy Sci 91(2):445–454

    Article  CAS  Google Scholar 

  • Concannon C, Gorman A, Samali A (2003) On the role of Hsp27 in regulating apoptosis. Apoptosis 8(1):61–70

    Article  CAS  Google Scholar 

  • Council NR (1971) A guide to environmental research on animals. National Academy of Science, Washington, DC

    Google Scholar 

  • Craig EA, Gross CA (1991) Is hsp70 the cellular thermometer? Trends Biochem Sci 16:135–140

    Article  CAS  Google Scholar 

  • Curtis SE (1983) Environmental management in animal agriculture. Iowa State University Press,

  • Dahlhoff EP (2004) Biochemical Indicators of Stress and Metabolism: Applications for Marine Ecological Studies. Ann Rev Physiol 66(1):183–207

    Article  CAS  Google Scholar 

  • Emig D, Salomonis N, Baumbach J, Lengauer T, Conklin BR, Albrecht M (2010) AltAnalyze and DomainGraph: analyzing and visualizing exon expression data. Nucleic Acids Res 38(suppl 2):W755–W762

    Article  CAS  Google Scholar 

  • Failla ML (2003) Trace elements and host defense: recent advances and continuing challenges. J Nutr 133(5):1443S–1447S

    CAS  Google Scholar 

  • Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61(1):243–282

    Article  CAS  Google Scholar 

  • Ferris SP, Jaber NS, Molinari M, Arvan P, Kaufman RJ (2013) UDP-glucose: glycoprotein glucosyltransferase (UGGT1) promotes substrate solubility in the endoplasmic reticulum. Mol Biol Cell 24(17):2597–2608

    Article  CAS  Google Scholar 

  • Fink AL (1999) Chaperone-mediated protein folding. Physiol Rev 79(2):425–449

    CAS  Google Scholar 

  • Fioravante D, Liu R-Y, Byrne JH (2008) The ubiquitin-proteasome system is necessary for long-term synaptic depression in aplysia. J Neurosci 28(41):10245–10256

    Article  CAS  Google Scholar 

  • Fuquay J (1981) Heat stress as it affects animal production. J Anim Sci 52(1):164–174

    Article  CAS  Google Scholar 

  • García-Ispierto I, López-Gatius F, Santolaria P, Yániz JL, Nogareda C, López-Béjar M, De Rensis F (2006) Relationship between heat stress during the peri-implantation period and early fetal loss in dairy cattle. Theriogenology 65(4):799–807

    Article  Google Scholar 

  • Gaughan J, Mader T, Holt S, Sullivan M, Hahn G (2010) Assessing the heat tolerance of 17 beef cattle genotypes. Int J Biometeorol 54(6):617–627

    Article  CAS  Google Scholar 

  • Georgopoulos C, Welch WJ (1993) Role of the Major Heat Shock Proteins as Molecular Chaperones. Ann Rev Cell Biol 9(1):601–634

    Article  CAS  Google Scholar 

  • Haile-Mariam M, Carrick MJ, Goddard ME (2008) Genotype by Environment Interaction for Fertility, Survival, and Milk Production Traits in Australian Dairy Cattle. J Dairy Sci 91(12):4840–4853

    Article  CAS  Google Scholar 

  • Hammami H, Bormann J, M’hamdi N, Montaldo HH, Gengler N (2013) Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J Dairy Sci 96(3):1844–1855

    Article  CAS  Google Scholar 

  • Hammami H, Vandenplas J, Vanrobays M-L, Rekik B, Bastin C, Gengler N (2015) Genetic analysis of heat stress effects on yield traits, udder health, and fatty acids of Walloon Holstein cows. J Dairy Sci 98(7):4956–4968

    Article  CAS  Google Scholar 

  • Hansen PJ (2009) Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1534):3341–3350

    Article  Google Scholar 

  • Hao Y, Liu J, Zhang Y, Yang P, Feng Y, Cui Y, Yang C, Gu X (2016) The microRNA expression profile in porcine skeletal muscle is changed by constant heat stress. Animal genetics

  • Jo S-H, Schatz JH, Acquaviva J, Singh H, Ren R (2010) Cooperation between deficiencies of IRF-4 and IRF-8 promotes both myeloid and lymphoid tumorigenesis. Blood 116(15):2759–2767

    Article  CAS  Google Scholar 

  • Jones D, Suttle N (1981) Some effects of copper deficiency on leucocyte function in sheep and cattle. Res Vet Sci 31(2):151–156

    CAS  Google Scholar 

  • Kadzere CT, Murphy MR, Silanikove N, Maltz E (2002) Heat stress in lactating dairy cows: a review. Livest Prod Sci 77(1):59–91

    Article  Google Scholar 

  • Kahl S, Elsasser T, Rhoads R, Collier RJ, Baumgard L (2015) Environmental heat stress modulates thyroid status and its response to repeated endotoxin challenge in steers. Domest Anim Endocrinol 52:43–50

    Article  CAS  Google Scholar 

  • Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  • Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2015) KEGG as a reference resource for gene and protein annotation. Nucleic acids research:gkv1070

  • Kang L, Lü B, Xu J, Hu H, Lai M (2008) Downregulation of Krüppel-like factor 9 in human. colorectal cancer 58(6):334–338

    CAS  Google Scholar 

  • Kapila N, Sharma A, Kishore A, Sodhi M, Tripathi PK, Mohanty AK, Mukesh M (2016) Impact of heat stress on cellular and transcriptional adaptation of mammary epithelial cells in riverine buffalo (Bubalus bubalis). PLoS One 11(9):e0157237

    Article  Google Scholar 

  • Kawahara M, Pandolfi A, Bartholdy B, Barreyro L, Will B, Roth M, Okoye-Okafor UC, Todorova TI, Figueroa ME, Melnick A (2012) H2. 0-like homeobox regulates early hematopoiesis and promotes acute myeloid leukemia. Cancer Cell 22(2):194–208

    Article  CAS  Google Scholar 

  • Kim Y, Kim H, Kim DS (2011) Association between daily environmental temperature and suicide mortality in Korea (2001–2005). Psychiat Res 186(2):390–396

    Article  Google Scholar 

  • Koch KS, Leffert HL (2011) Ectopic expression of CD74 in Ikkβ-deleted mouse hepatocytes. Acta Histochem 113(4):428–435

    Article  CAS  Google Scholar 

  • Kotaja N, Macho B, Sassone-Corsi P (2005) Microtubule-independent and protein kinase A-mediated function of kinesin KIF17b controls the intracellular transport of activator of CREM in testis (ACT). J Biol Chem 280(36):31739–31745

    Article  CAS  Google Scholar 

  • Kregel KC (2002) Invited review: heat shock proteins: modifying factors in physiological stress responses and acquired thermotolerance. J Appl Physiol 92(5):2177–2186

    Article  CAS  Google Scholar 

  • Kültz D (2005) Molecular and evolutionary basis of the cellular stress response. Annu Rev Physiol 67:225–257

    Article  Google Scholar 

  • Kysely J, Kim J (2009) Mortality during heat waves in South Korea, 1991 to 2005: How exceptional was the 1994 heat wave? Clim Res 38:105–116

    Article  Google Scholar 

  • Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie2. Nat Methods 9(4):357–359

    Article  CAS  Google Scholar 

  • Lee WC, Wen HC, Chang CP, Chen MY, Lin M-T (2006) Heat shock protein 72 overexpression protects against hyperthermia, circulatory shock, and cerebral ischemia during heatstroke. J Appl Physiol 100(6):2073–2082

    Article  CAS  Google Scholar 

  • Li C, Sun D, Zhang S, Wang S, Wu X, Zhang Q, Liu L, Li Y, Qiao L (2014) Genome wide association study identifies 20 novel promising genes associated with milk fatty acid traits in Chinese Holstein. PLoS One 9(5):e96186

    Article  Google Scholar 

  • Li Q, Han J, Du F, Ju Z, Huang J, Wang J, Li R, Wang C, Zhong J (2011) Novel SNPs in HSP70A1A gene and the association of polymorphisms with thermo tolerance traits and tissue specific expression in Chinese Holstein cattle. Mol Biol Rep 38(4):2657–2663

    Article  CAS  Google Scholar 

  • Lindquist S, Craig E (1988) The heat-shock proteins. Annu Rev Genet 22(1):631–677

    Article  CAS  Google Scholar 

  • Liu F, Wang W, Sun X, Liang Z, Wang F (2014) RNA-Seq revealed complex response to heat stress on transcriptomic level in Saccharina japonica (Laminariales, Phaeophyta). J Appl Phycol 26(3):1585–1596

    Article  CAS  Google Scholar 

  • Liu S, Wang X, Sun F, Zhang J, Feng J, Liu H, Rajendran K, Sun L, Zhang Y, Jiang Y (2013) RNA-Seq reveals expression signatures of genes involved in oxygen transport, protein synthesis, folding, and degradation in response to heat stress in catfish. Physiol Genomics 45(12):462–476

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25(4):402–408

    Article  CAS  Google Scholar 

  • Lockwood BL, Somero GN (2011) Transcriptomic responses to salinity stress in invasive and native blue mussels (genus Mytilus). Mol Ecol 20(3):517–529

    Article  Google Scholar 

  • Lukasewycz O (1981) Copper deficiency suppresses the immune response of mice. Science 213(4507):559–561

    Article  Google Scholar 

  • Marty A, Amigues Y, Servin B, Renand G, Levéziel H, Rocha D (2010) Genetic variability and linkage disequilibrium patterns in the bovine DNAJA1 gene. Mol Biotechnol 44(3):190–197

    Article  CAS  Google Scholar 

  • Moran J (2005) Tropical dairy farming: feeding management for small holder dairy farmers in the humid tropics. Csiro Publishing

  • Muthusamy V, Piva TJ (2010) The UV response of the skin: a review of the MAPK, NFκB and TNFα signal transduction pathways. Arch Dermatol Res 302(1):5–17

    Article  CAS  Google Scholar 

  • Na S-Y, Choi J-E, Kim H-J, Jhun BH, Lee Y-C, Lee JW (1999) Bcl3, an IκB protein, stimulates activating protein-1 transactivation and cellular proliferation. J Biol Chem 274(40):28491–28496

    Article  CAS  Google Scholar 

  • Naidoo N (2009) ER and aging—protein folding and the ER stress response. Ageing Res Rev 8(3):150–159

    Article  CAS  Google Scholar 

  • Newberne P, Hunt C, Young V (1968) The role of diet and the reticuloendothelial system in the response of rats to Salmonella typhilmurium infection. Br J Exp Pathol 49(5):448

    CAS  Google Scholar 

  • NRC NRC (1987) Predicting feed intake of food-producing animals. National Academies Press,

  • Odunuga O, Longshaw VM, Blatch GL (2004) Hop: more than an Hsp70/Hsp90 adaptor protein. BioEssays 26(10):1058–1068

    Article  CAS  Google Scholar 

  • Olson TA, Chase Jr CC, Lucena C, Godoy E, Zuniga A, Collier RJ Effect of hair characteristics on the adaptation of cattle to warm climates. In, 2006 2006. Instituto Prociência, pp 16–07

  • Page TJ, Sikder D, Yang L, Pluta L, Wolfinger RD, Kodadek T, Thomas RS (2006) Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol BioSyst 2(12):627–639

    Article  CAS  Google Scholar 

  • Pei H, Yao Y, Yang Y, Liao K, Wu JR (2011) Krüppel-like factor KLF9 regulates PPARγ transactivation at the middle stage of adipogenesis. Cell Death & Differentiation 18(2):315–327

    Article  CAS  Google Scholar 

  • Perdomo J, FOCK EL, Kaur G, Yan F, Khachigian L, Jans D, Chong B (2010) A monopartite sequence is essential for p45 NF-E2 nuclear translocation, transcriptional activity and platelet production. J Thromb Haemost 8(11):2542–2553

    Article  CAS  Google Scholar 

  • Pirkkala L, Nykänen P, Sistonen LEA (2001) Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J 15(7):1118–1131

    Article  CAS  Google Scholar 

  • Rahman MB, Kamal MM, Rijsselaere T, Vandaele L, Shamsuddin M, Van Soom A (2014a) Altered chromatin condensation of heat-stressed spermatozoa perturbs the dynamics of DNA methylation reprogramming in the paternal genome after in vitro fertilisation in cattle. Reprod Fertil Dev 26(8):1107–1116

    Article  CAS  Google Scholar 

  • Rahman MB, Vandaele L, Rijsselaere T, El-Deen MS, Maes D, Shamsuddin M, Van Soom A (2014b) Bovine spermatozoa react to in vitro heat stress by activating the mitogen-activated protein kinase 14 signalling pathway. Reprod Fertil Dev 26(2):245–257

    Article  CAS  Google Scholar 

  • Rao Y, Su J, Yang C, Peng L, Feng X, Li Q (2013) Characterizations of two grass carp Ctenopharyngodon idella HMGB2 genes and potential roles in innate immunity. Developmental & Comparative Immunology 41(2):164–177

    Article  CAS  Google Scholar 

  • Ravagnolo O, Misztal I, Hoogenboom G (2000) Genetic Component of Heat Stress in Dairy Cattle, Development of Heat Index Function. J Dairy Sci 83(9):2120–2125

    Article  CAS  Google Scholar 

  • Ravagnolo O, Misztal I (2002) Effect of Heat Stress On Nonreturn Rate in Holstein Cows: Genetic Analyses. J Dairy Sci 85(11):3092–3100

    Article  CAS  Google Scholar 

  • Renaudeau D, Collin A, Yahav S, de Basilio V, Gourdine JL, Collier RJ (2012) Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal 6(05):707–728

    Article  CAS  Google Scholar 

  • Rosenkrans C, Banks A, Reiter S, Looper M (2010) Calving traits of crossbred Brahman cows are associated with heat shock protein 70 genetic polymorphisms. Anim Reprod Sci 119(3):178–182

    Article  CAS  Google Scholar 

  • Ruggiano A, Foresti O, Carvalho P (2014) ER-associated degradation: protein quality control and beyond. J Cell Biol 204(6):869–879

    Article  CAS  Google Scholar 

  • Scaletti R, Trammell D, Smith B, Harmon R (2003) Role of dietary copper in enhancing resistance to Escherichia coli mastitis. J Dairy Sci 86(4):1240–1249

    Article  CAS  Google Scholar 

  • Sevane N, Armstrong E, Cortés O, Wiener P, Wong RP, Dunner S, Consortium G (2013) Association of bovine meat quality traits with genes included in the PPARG and PPARGC1A networks. Meat Sci 94(3):328–335

    Article  CAS  Google Scholar 

  • Shearer JK, Beede DK (1990) Heat stress. 2. Effects of high environmental temperature on production, reproduction, and health of dairy cattle. Agri Practice

  • Sompallae R, Stavropoulou V, Houde M, Masucci MG (2008) The MAPK signaling cascade is a central hub in the regulation of cell cycle, apoptosis and cytoskeleton remodeling by tripeptidyl-peptidase II. Gene regulation and systems biology 2:253

    Article  Google Scholar 

  • Sonna LA, Fujita J, Gaffin SL, Lilly CM (2002) Invited review: effects of heat and cold stress on mammalian gene expression. J Appl Physiol 92(4):1725–1742

    Article  CAS  Google Scholar 

  • Soroceanu L, Murase R, Limbad C, Singer E, Allison J, Adrados I, Kawamura R, Pakdel A, Fukuyo Y, Nguyen D (2013) Id-1 is a key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target. Cancer Res 73(5):1559–1569

    Article  CAS  Google Scholar 

  • Srikanth K, Kwon A, Lee E, Chung H (2017) Characterization of genes and pathways that respond to heat stress in Holstein calves through transcriptome analysis. Cell Stress Chaperones 22(1):29–42

    Article  CAS  Google Scholar 

  • St-Pierre NR, Cobanov B, Schnitkey G (2003) Economic losses from heat stress by US livestock industries. J Dairy Sci 86:E52–E77

    Article  Google Scholar 

  • Stolz A, Wolf DH (2010) Endoplasmic reticulum associated protein degradation: a chaperone assisted journey to hell. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1803(6):694–705

    Article  CAS  Google Scholar 

  • Strong R, Silva E, Cheng H, Eicher S (2015) Acute brief heat stress in late gestation alters neonatal calf innate immune functions. J Dairy Sci 98(11):7771–7783

    Article  CAS  Google Scholar 

  • Suttle N, Field A, Barlow R (1970) Experimental copper deficiency in sheep. J Comp Pathol 80(1):151–162

    Article  CAS  Google Scholar 

  • Takeshima S, Matsumoto Y, Chen J, Yoshida T, Mukoyama H, Aida Y (2008) Evidence for cattle major histocompatibility complex (BoLA) class II DQA1 gene heterozygote advantage against clinical mastitis caused by Streptococci and Escherichia species. Tissue Antigens 72(6):525–531

    Article  CAS  Google Scholar 

  • Taraba JL, Bewley J n.d.Effects of the thermal stress on the incidence of mastitis in dairy cattle.

  • Thakar NY, Ovchinnikov DA, Hastie ML, Gorman J, Wolvetang EJ (2015) RELB alters proliferation of human pluripotent stem cells via IMP3-and LIN28-mediated modulation of the expression of IGF2 and other cell-cycle regulators. Stem Cells Dev 24(16):1888–1900

    Article  CAS  Google Scholar 

  • Tomanek L, Zuzow MJ (2010) The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress. J Exper Biol 213(20):3559–3574

    Article  CAS  Google Scholar 

  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM (2004) The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell 15(3):1254–1261

    Article  CAS  Google Scholar 

  • Tsai YC, Weissman AM (2010) The unfolded protein response, degradation from the endoplasmic reticulum, and cancer. Genes & cancer 1(7):764–778

    Article  CAS  Google Scholar 

  • van Verk MC, Bol JF, Linthorst HJ (2011) WRKY transcription factors involved in activation of SA biosynthesis genes. BMC Plant Biol 11(1):89

    Article  Google Scholar 

  • Volloch V, Olsen BR (2013) Why cellular stress suppresses adipogenesis in skeletal tissue, but is ineffective in adipose tissue: control of mesenchymal cell differentiation via integrin binding sites in extracellular matrices. Matrix Biol 32(7):365–371

    Article  CAS  Google Scholar 

  • Wakana Y, Takai S, K-i N, Tani K, Yamamoto A, Watson P, Stephens DJ, Hauri H-P, Tagaya M (2008) Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated degradation. Mol Biol Cell 19(5):1825–1836

    Article  CAS  Google Scholar 

  • West JW (2003) Effects of heat-stress on production in dairy cattle. J Dairy Sci 86(6):2131–2144

    Article  CAS  Google Scholar 

  • White C, Lee J, Kambe T, Fritsche K, Petris MJ (2009) A role for the ATP7A copper-transporting ATPase in macrophage bactericidal activity. J Biol Chem 284(49):33949–33956

    Article  CAS  Google Scholar 

  • Wynn TA (2015) Type 2 cytokines: mechanisms and therapeutic strategies. Nat Rev Immunol 15(5):271–282

    Article  CAS  Google Scholar 

  • Xiong Q, Chai J, Xiong H, Li W, Huang T, Liu Y, Suo X, Zhang N, Li X, Jiang S (2013) Association analysis of HSP70A1A haplotypes with heat tolerance in Chinese Holstein cattle. Cell Stress and Chaperones 18(6):711–718

    Article  CAS  Google Scholar 

  • Xu Y, Gao S, Yang Y, Huang M, Cheng L, Wei Q, Fei Z, Gao J, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14(1):1

    Article  Google Scholar 

  • Yousef MK (1985) Stress physiology in livestock. Volume III. Poultry. CRC Press Inc.,

  • Zeng T, Zhang L, Li J, Wang D, Tian Y, Lu L (2015) De novo assembly and characterization of Muscovy duck liver transcriptome and analysis of differentially regulated genes in response to heat stress. Cell Stress and Chaperones 20(3):483–493

    Article  CAS  Google Scholar 

  • Zhang H-M, Chen H, Liu W, Liu H, Gong J, Wang H, Guo A-Y (2012) AnimalTFDB: a comprehensive animal transcription factor database. Nucleic Acids Res 40(D1):D144–D149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work contributes to the internal project “Cooperative Research Program for Agriculture Science and Technology Development (ID PJ01005002)” and was supported by the National Institute of Animal Science in Rural Development Administration of Korea. Krishnamoorthy Srikanth was supported by 2016 Postdoctoral Fellowship Program of the National Institute of Animal Science, Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoyoung Chung.

Electronic supplementary material

Supplementary File 1

(XLSX 3625 kb)

Supplementary File 2

(XLSX 107 kb)

Supplemental Fig. 1

Rectal temperature measurement of Holstein calves during the experimental period (PNG 238 kb)

Supplemental Fig. 2

Head temperature measurement of Holstein calves during the experimental period (PNG 185 kb)

Supplemental Fig. 3

Body temperature measurement of Holstein calves during the experimental period (PNG 168 kb)

Supplemental Fig. 4

a Scatter plots of all the genes transcribed on days 1, 2, and 3. Red indicates positive expression and blue indicates negative expression. b A Venn diagram of differentially expressed genes (3 FC and FDR <0.05) on days 1, 2, and 3 (PNG 256 kb)

Supplemental Fig. 5

Hierarchical clustering of all the DEGs that responded to thermal stress. Red corresponds to upregulation and yellow corresponds to downregulation (PNG 43 kb)

Supplementary Table 1

(DOCX 16 kb)

Supplementary Table 2

(DOCX 13 kb)

Supplementary Table 3

(DOCX 17 kb)

Supplementary Table 4

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srikanth, K., Lee, E., Kwan, A. et al. Transcriptome analysis and identification of significantly differentially expressed genes in Holstein calves subjected to severe thermal stress. Int J Biometeorol 61, 1993–2008 (2017). https://doi.org/10.1007/s00484-017-1392-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1392-3

Keywords

Navigation