The rise of phenology with climate change: an evaluation of IJB publications

Abstract

In recent decades, phenology has become an important tool by which to measure both the impact of climate change on ecosystems and the feedback of ecosystems to the climate system. However, there has been little attempt to date to systematically quantify the increase in the number of scientific publications with a focus on phenology and climate change. In order to partially address this issue, we examined the number of articles (original papers, reviews and short communications) containing the terms ‘phenology’ and ‘climate change’ in the title, abstract or keywords, published in the International Journal of Biometeorology in the 60 years since its inception in 1957. We manually inspected all issues prior to 1987 for the search terms and subsequently used the search facility on the Web of Science online database. The overall number of articles published per decade remained relatively constant (255–378) but rose rapidly to 1053 in the most recent decade (2007–2016), accompanied by an increase (41–172) in the number of articles containing the search terms. A number of factors may have contributed to this rise, including the recognition of the value of phenology as an indicator of climate change and the initiation in 2010 of a series of conferences focusing on phenology which subsequently led to two special issues of the journal. The word ‘phenology’ was in use from the first issue, whereas ‘climate change’ only emerged in 1987 and peaked in 2014. New technologies such as satellite remote sensing and the internet led to an expansion of and greater access to a growing reservoir of phenological information. The application of phenological data included determining the impact of warming of phenophases, predicting wine quality and the pollen season, demonstrating the potential for mismatch to occur and both reconstructing and forecasting climate. Even though this analysis was limited to one journal, it is likely to be indicative of a similar trend across other scientific publications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Adak T, Chakravarty NVK (2010) Quantifying the thermal heat requirement of Brassica in assessing biophysical parameters under semi-arid microenvironments. Int J Biometeorol 54(4):365–377

    Article  Google Scholar 

  2. Aguilera F, Ruiz L, Fornaciari M, Romano B, Galan C, Oteros J, Ben Dhiab A, Msallem M, Orlandi F (2014) Heat accumulation period in the Mediterranean region: phenological response of the olive in different climate areas (Spain, Italy and Tunisia). Int J Biometeorol 58(5):867–876

    Article  Google Scholar 

  3. Aguilera F, Fornaciari M, Ruiz-Valenzuela L, Galan C, Msallem M, Ben Dhiab A, Diaz-de la Guardia C, Trigo MD, Bonofiglio T, Orlandi F (2015) Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region. Int J Biometeorol 59(5):629–641

    Article  Google Scholar 

  4. Ahas R (1999) Long-term phyto-, ornitho- and ichthyophenological time-series analyses in Estonia. Int J Biometeorol 42(3):119–123

    Article  Google Scholar 

  5. Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51(1):17–26

    Article  Google Scholar 

  6. Ahas R, Jaagus J, Aasa A (2000) The phenological calendar of Estonia and its correlation with mean air temperature. Int J Biometeorol 44(4):159–166

    CAS  Article  Google Scholar 

  7. Aono Y (2015) Cherry blossom phenological data since the seventeenth century for Edo (Tokyo), Japan, and their application to estimation of March temperatures. Int J Biometeorol 59(4):427–434

    Article  Google Scholar 

  8. Aono Y, Saito S (2010) Clarifying springtime temperature reconstructions of the medieval period by gap-filling the cherry blossom phenological data series at Kyoto, Japan. Int J Biometeorol 54(2):211–219

    Article  Google Scholar 

  9. Askeyev OV, Tischin D, Sparks TH, Askeyev IV (2005) The effect of climate on the phenology, acorn crop and radial increment of pedunculate oak (Quercus robur) in the middle Volga region, Tatarstan, Russia. Int J Biometeorol 49(4):262–266

    CAS  Article  Google Scholar 

  10. Askeyev OV, Sparks TH, Askeyev IV, Tryjanowski P (2007) Is earlier spring migration of Tatarstan warblers expected under climate warming? Int J Biometeorol 51(6):459–463

    Article  Google Scholar 

  11. Athayde EA, Morellato LPC (2014) Anthropogenic edges, isolation and the flowering time and fruit set of Anadenanthera peregrina, a cerrado savanna tree. Int J Biometeorol 85(4):443–454

    Article  Google Scholar 

  12. Baier W (1973) Crop-weather analysis model I. Summary. Int J Biometeorol 17(4):313–320

    Article  Google Scholar 

  13. Baier W, Davidson H, Desjardins RL, Ouellet CE, Williams GDV (1976) Recent biometeorological applications to crops. Int J Biometeorol 20(2):108–127

    Article  Google Scholar 

  14. Barnuud NN, Zerihun A, Mpelasoka F, Gibberd M, Bates B (2014) Responses of grape berry anthocyanin and titratable acidity to the projected climate change across the Western Australian wine regions. Int J Biometeorol 58(6):1279–1293

    Article  Google Scholar 

  15. Bartosova L, Trnka M, Bauer Z, Mozny M, Stepanek P, Zalud Z (2014) Phenological differences among selected residents and long-distance migrant bird species in central Europe. Int J Biometeorol 58(5):809–817

    Article  Google Scholar 

  16. Bauer Z, Trnka M, Bauerova J, Mozny M, Stepanek P, Bartosova L, Zalud Z (2010) Changing climate and the phenological response of great tit and collared flycatcher populations in floodplain forest ecosystems in Central Europe. Int J Biometeorol 54(1):99–111

    Article  Google Scholar 

  17. Beaubien EG, Freeland HJ (2000) Spring phenology trends in Alberta, Canada: links to ocean temperature. Int J Biometeorol 38(1):23–27

    Article  Google Scholar 

  18. Beaubien EG, Hamann A (2011) Plant phenology networks of citizen scientists: recommendations from two decades of experience in Canada. Int J Biometeorol 55(6):833–841

    Article  Google Scholar 

  19. Beaubien EG, Johnson DL (1994) Flowering plant phenology and weather in Alberta, Canada. Int J Biometeorol 44(2):53–59

    Article  Google Scholar 

  20. Bergant K, Kajfez-Bogataj L, Crepinsek Z (2002) Statistical downscaling of general-circulation-model-simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia. Int J Biometeorol 46(1):22–32

    Article  Google Scholar 

  21. Biondi F, Rossi S (2016) Plant-water relationships in the Great Basin Desert of North America derived from Pinus monophylla hourly dendrometer records. Int J Biometeorol 59(8):939–953

    Article  Google Scholar 

  22. Biudes MS, Machado NG, Danelichen VHD, Souza MC, Vourlitis GL, Nogueira JD (2014) Ground and remote sensing-based measurements of leaf area index in a transitional forest and seasonal flooded forest in Brazil. Int J Biometeorol 58(6):1181–1193

    Article  Google Scholar 

  23. Blecharczyk A, Sawinska Z, Malecka I, Sparks TH, Tryjanowski P (2016) The phenology of winter rye in Poland: an analysis of long-term experimental data. Int J Biometeorol 60(9):1341–1346

    Article  Google Scholar 

  24. Blinova I, Chmielewski FM (2015) Climatic warming above the Arctic Circle: are there trends in timing and length of the thermal growing season in Murmansk Region (Russia) between 1951 and 2012? Int J Biometeorol 59(6):693–705

    Article  Google Scholar 

  25. Bogawski P, Grewling L, Nowak M, Smith M, Jackowiak B (2014) Trends in atmospheric concentrations of weed pollen in the context of recent climate warming in Poznan (western Poland). Int J Biometeorol 58(8):1759–1768

    Article  Google Scholar 

  26. Bolmgren K, Vanhoenacker D, Miller-Rushing AJ (2013) One man, 73 years, and 25 species. Evaluating phenological responses using a lifelong study of first flowering dates. Int J Biometeorol 57(7):367–375

    CAS  Article  Google Scholar 

  27. Borchert R, Robertson K, Schwartz MD, Williams-Linera G (2005) Phenology of temperate trees in tropical climates. Int J Biometeorol 38(1):23–27

    Google Scholar 

  28. Both C, Bouwhuis S, Lessells CM, Visser ME (2006) Climate change and population declines in a long-distance migratory bird. Nature 441:81–83

    CAS  Article  Google Scholar 

  29. Bourke A (1959) Meteorology and the timing of fungicide applications against potato blight. Int J Biometeorol 50(1):57–65

    Google Scholar 

  30. Bradley NL (1999) Phenological changes reflect climate change in Wisconsin. Proc Natl Acad Sci 96(17):9701–9704

    CAS  Article  Google Scholar 

  31. Brooks SJ, Self A, Toloni F, Sparks T (2014) Natural history museum collections provide information on phenological change in British butterflies since the late-nineteenth century. Int J Biometeorol 58(8):1749–1758

    Article  Google Scholar 

  32. Buckley LB, Foushee MS (2012) Footprints of climate change in US national park visitation. Int J Biometeorol 56(6):1173–1177

    Article  Google Scholar 

  33. Cabre MF, Quenol H, Nunez M (2016) Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina. Int J Biometeorol 60(9):1325–1340

    Article  Google Scholar 

  34. Caffarra A, Donnelly A (2011) The ecological significance of phenology in four different tree species: effects of light and temperature on bud burst. Int J Biometeorol 55(5):711–721

    Article  Google Scholar 

  35. Caffarra A, Eccel E (2010) Increasing the robustness of phenological models for Vitis vinifera cv. Chardonnay. Int J Biometeorol 54(3):255–267

    Article  Google Scholar 

  36. Caffarra A, Zottele F, Gleeson E, Donnelly A (2014) Spatial heterogeneity in the timing of birch budburst in response to future climate warming in Ireland. Int J Biometeorol 58(4):509–519

    Article  Google Scholar 

  37. Camps JO, Ramos MC (2012) Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. Int J Biometeorol 56(5):853–864

    Article  Google Scholar 

  38. Chambers LE, Dann P, Cannell B, Woehler EJ (2014) Climate as a driver of phenological change in southern seabirds. Int J Biometeorol 58(4):603–612

    Article  Google Scholar 

  39. Charrier G, Bonhomme M, Lacointe A, Ameglio T (2011) Are budburst dates, dormancy and cold acclimation in walnut trees (Juglans regia L.) under mainly genotypic or environmental control? Int J Biometeorol 55(6):763–774

    Article  Google Scholar 

  40. Chen C (2006) CiteSpace II: detecting and visualizing emerging trends and transient patterns in scientific literature. J Am Soc Inf Sci Technol 57(3):359–377

    Article  Google Scholar 

  41. Chen XQ, Xu L (2012) Phenological responses of Ulmus pumila (Siberian elm) to climate change in the temperate zone of China. Int J Biometeorol 56(4):695–706

    Article  Google Scholar 

  42. Chen XQ, Li J, Xu L, Liu L, Ding D (2014) Modeling greenup date of dominant grass species in the inner Mongolian grassland using air temperature and precipitation data. Int J Biometeorol 58(4):463–471

    Article  Google Scholar 

  43. Chen XQ, Tian YH, Xu L (2015) Temperature and geographic attribution of change in the Taraxacum mongolicum growing season from 1990 to 2009 in eastern China’s temperate zone. Int J Biometeorol 59(10):1437–1452

    Article  Google Scholar 

  44. Chmielewski FM, Rotzer T, (2001) Responses of tree phenology to climatic changes across Europe. Ag Forest Meterol 108:101–112

  45. Chmielewski FM, Muller A, Kuchler W (2005) Possible impacts of climate change on natural vegetation in Saxony (Germany). Int J Biometeorol 50(2):96–104

    Article  Google Scholar 

  46. Chmielewski FM, Blumel K, Scherbaum-Heberer C, Koppmann-Rumpf B, Schmidt KH (2013) A model approach to project the start of egg laying of Great Tit (Parus major L.) in response to climate change. Int J Biometeorol 57(2):287–297

    Article  Google Scholar 

  47. Chuine I, Cour P, Rousseau DD (1998) Fitting models predicting dates of flowering of temperate-zone trees using simulated annealing. Plant Cell Environ 21(5):455–466

    Article  Google Scholar 

  48. Chuine I, Cour P, Rousseau DD (1999) Selecting models to predict the timing of flowering of temperate trees: implications for tree phenology modelling. Plant Cell Environ 22(1):1–13

    Article  Google Scholar 

  49. Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22(7):357–365

    Article  Google Scholar 

  50. Cooper CB (2014) Is there a weekend bias in clutch-initiation dates from citizen science? Implications for studies of avian breeding phenology. Int J Biometeorol 58(7):1415–1419

    Article  Google Scholar 

  51. Cornelius C, Petermeier H, Estrella N, Menzel A (2011) A comparison of methods to estimate seasonal phenological development from BBCH scale recording. Int J Biometeorol 55(6):867–877

    Article  Google Scholar 

  52. Courter JR, Johnson RJ, Stuyck CM, Lang BA, Kaiser EW (2013) Weekend bias in citizen science data reporting: implications for phenology studies. Int J Biometeorol 57(5):715–720

    Article  Google Scholar 

  53. Crepinsek Z, Stampar F, Kajfez-Bogataj L, Solar A (2012) The response of Corylus avellana L. phenology to rising temperature in north-eastern Slovenia. Int J Biometeorol 56(4):681–694

    Article  Google Scholar 

  54. Crick HQP, Sparks TH (1999) Climate change related to egg-laying trends. Nature 399:423

    CAS  Article  Google Scholar 

  55. Crimmins TM, Bertelsen CD, Crimmins MA (2014) Within-season flowering interruptions are common in the water-limited Sky Islands. Int J Biometeorol 58(4):419–426

    Article  Google Scholar 

  56. Cufar K, De Luis M, Prislan P, Gricar J, Crepinsek Z, Merela M, Kajfez-Bogataj L (2015) Do variations in leaf phenology affect radial growth variations in Fagus sylvatica? Int J Biometeorol 59(8):1127–1132

    Article  Google Scholar 

  57. Dai JH, Wang HJ, Ge QS (2013) Multiple phenological responses to climate change among 42 plant species in Xi’an, China. Int J Biometeorol 57(5):749–458

    Article  Google Scholar 

  58. Dai JH, Wang HJ, Ge QS (2014) The spatial pattern of leaf phenology and its response to climate change in China. Int J Biometeorol 58(4):521–528

    Article  Google Scholar 

  59. Dalu JD, Baldi M, Dalla Marta A, Orlandini S, Maracchi G, Dalu G, Grifoni D, Mancini M (2013) Mediterranean climate patterns and wine quality in North and Central Italy. Int J Biometeorol 57(5):729–742

    Article  Google Scholar 

  60. Dantec CF, Vitasse Y, Bonhomme M, Louvet JM, Kremer A, Delzon S (2014) Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. Int J Biometeorol 58(9):1853–1864

    Article  Google Scholar 

  61. Darbyshire R, Webb L, Goodwin I, Barlow EWR (2013) Evaluation of recent trends in Australian pome fruit spring phenology. Int J Biometeorol 57(3):409–421

    Article  Google Scholar 

  62. Darbyshire R, Webb L, Goodwin I, Barlow EWR (2014) Challenges in predicting climate change impacts on pome fruit phenology. Int J Biometeorol 58(6):1119–1133

    Article  Google Scholar 

  63. Das T, Das AK (2013) Vegetative and reproductive phenology of some multipurpose tree species in the homegardens of Barak Valley, northeast India. Int J Biometeorol 57(1):185–196

    Article  Google Scholar 

  64. Dech JP, Nosko P (2004) Rapid growth and early flowering in an invasive plant, purple loosestrife (Lythrum salicaria L.) during an El Nino spring. Int J Biometeorol 49(1):26–31

    CAS  Article  Google Scholar 

  65. Defila C, Clot B (2001) Phytophenological trends in Switzerland. Int J Biometeorol 45(4):203–207

    CAS  Article  Google Scholar 

  66. Demarée GR, Ruthshauser T (2009) Origins of the word phenology. EOS Trans Am Geophys Union 90(34):291

    Article  Google Scholar 

  67. Denny EG, Gerst KL, Miller-Rushing AJ, Tierney GL, Crimmins TM, Enquist CAF, Guertin P, Rosemartin AH, Schwartz MD, Thomas KA, Weltzin JF (2014) Standardized phenology monitoring methods to track plant and animal activity for science and resource management applications. Int J Biometeorol 58(4):591–601

    Article  Google Scholar 

  68. Dierenbach J, Badeck FW, Schaber J (2013) The plant phenological online database (PPODB): an online database for long-term phenological data. Int J Biometeorol 57(5):805–812

    Article  Google Scholar 

  69. Dirmhirn I (1991) Biometeorology in Austria—past, present and future. Int J Biometeorol 25(3):133–138

    Article  Google Scholar 

  70. Diskin E, Proctor H, Jebb M, Sparks T, Donnelly A (2012) The phenology of Rubus fruticosus in Ireland: herbarium specimens provide evidence for the response of phenophases to temperature, with implications for climate warming. Int J Biometeorol 56(6):1103–1111

    CAS  Article  Google Scholar 

  71. Doi H (2012) Response of the Morus bombycis growing season to temperature and its latitudinal pattern in Japan. Int J Biometeorol 56(5):895–902

    Article  Google Scholar 

  72. Donnelly A, Jones MB, Sweeney J (2004) A review of indicators of climate change for use in Ireland. Int J Biometeorol 49(1):1–12

    Article  Google Scholar 

  73. Donnelly A, Cooney T, Jennings E, Buscardo E, Jones M (2009) Response of birds to climatic variability; evidence from the western fringe of Europe. Int J Biometeorol 53(3):211–220

    Article  Google Scholar 

  74. Donnelly A, Caffarra A, O’Neill BF (2011a) A review of climate-driven mismatches between interdependent phenophases in terrestrial and aquatic ecosystems. Int J Biometeorol 55(6):805–817

    Article  Google Scholar 

  75. Donnelly A, Caffarra A, O’Neill BF, Schwartz MD (2011b) Phenology 2010 conference, Dublin, Ireland. Int J Biometeorol 55(6):751–752

    Article  Google Scholar 

  76. Donnelly A, Crowe O, Regan E, Begley S, Caffarra A (2014) The role of citizen science in monitoring biodiversity in Ireland. Int J Biometeorol 58(6):1237–1249

    Article  Google Scholar 

  77. Donnelly A, Yu R, Liu LL (2015) Trophic level responses differ as climate warms in Ireland. Int J Biometeorol 59(8):1007–1017

    Article  Google Scholar 

  78. Du JH, Yan P, Dong YX (2010) Phenological response of Nitraria tangutorum to climate change in Minqin County, Gansu Province, northwest China. Int J Biometeorol 54(5):583–593

    Article  Google Scholar 

  79. Eccel E, Rea R, Caffarra A, Crisci A (2009) Risk of spring frost to apple production under future climate scenarios: the role of phenological acclimation. Int J Biometeorol 53(3):273–286

    Article  Google Scholar 

  80. El Yaacoubi A, Malagi G, Oukabli A, Citadin I, Hafidi M, Bonhomme M, Legave JM (2016) Differentiated dynamics of bud dormancy and growth in temperate fruit trees relating to bud phenology adaptation, the case of apple and almond trees. Int J Biometeorol 60(11):1695–1710

    Article  Google Scholar 

  81. Ellwood ER, Playfair SR, Polgar CA, Primack RB (2014) Cranberry flowering times and climate change in southern Massachusetts. Int J Biometeorol 58(7):1693–1697

    Article  Google Scholar 

  82. Enquist CAF, Kellermann JL, Gerst KL, Miller-Rushing AJ (2014) Phenology research for natural resource management in the United States. Int J Biometeorol 58(4):579–589

    Article  Google Scholar 

  83. Estiarte M, Puig G, Penuelas J (2011) Large delay in flowering in continental versus coastal populations of a Mediterranean shrub, Globularia alypum. Int J Biometeorol 55(6):855–865

    Article  Google Scholar 

  84. Estrella N, Menzel A, Kramer U, Behrendt H (2006) Integration of flowering dates in phenology and pollen counts in aerobiology: analysis of their spatial and temporal coherence in Germany (1992–1999). Int J Biometeorol 51(1):49–59

    Article  Google Scholar 

  85. Fernandez-Rodriguez S, Duran-Barroso P, Silva-Palacios I, Tormo-Molina R, Maya-Manzano JM, Gonzalo-Garijo A (2016) Regional forecast model for the Olea pollen season in Extremadura (SW Spain). Int J Biometeorol 60(10):1509–1517

    Article  Google Scholar 

  86. Fila G, Tomasi D, Gaiotti F, Jones GV (2016) The book of vinesprouts of KAszeg (Hungary): a documentary source for reconstructing spring temperatures back to the eighteenth century. Int J Biometeorol 60(2):207–219

    Article  Google Scholar 

  87. Filippa G, Cremonese E, Galvagno M, Migliavacca M, di Cella UM, Petey M, Siniscalco C (2015) Five years of phenological monitoring in a mountain grassland: inter-annual patterns and evaluation of the sampling protocol. Int J Biometeorol 59(12):1927–1937

    Article  Google Scholar 

  88. Fitchett JM, Grab SW, Thompson DI, Roshan G (2014) Increasing frost risk associated with advanced citrus flowering dates in Kerman and Shiraz, Iran: 1960–2010. Int J Biometeorol 58(8):1811–1815

    Article  Google Scholar 

  89. Forkner RE (2014) Simulated herbivory advances autumn phenology in Acer rubrum. Int J Biometeorol 58(4):499–507

    Article  Google Scholar 

  90. Fotiou C, Damialis A, Krigas N, Halley JM, Vokou D (2011) Parietaria judaica flowering phenology, pollen production, viability and atmospheric circulation, and expansive ability in the urban environment: impacts of environmental factors. Int J Biometeorol 55(1):35–50

    Article  Google Scholar 

  91. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57(6):909–925

    CAS  Article  Google Scholar 

  92. Frei T, Gassner E (2008) Climate change and its impact on birch pollen quantities and the start of the pollen season an example from Switzerland for the period 1969–2006. Int J Biometeorol 52(7):667–674

    Article  Google Scholar 

  93. Friedman JM, Roelle JE, Cade BS (2011) Genetic and environmental influences on leaf phenology and cold hardiness of native and introduced riparian trees. Int J Biometeorol 55(6):775–787

    Article  Google Scholar 

  94. Fuccillo KK, Crimmins TM, de Rivera CE, Elder TS (2015) Assessing accuracy in citizen science-based plant phenology monitoring. Int J Biometeorol 59(7):917–926

    Article  Google Scholar 

  95. Galan C, Garcia-Mozo H, Vazquez L, Ruiz L, de la Guardia CD, Trigo MM (2005) Heat requirement for the onset of the Olea europaea L. pollen season in several sites in Andalusia and the effect of the expected future climate change. Int J Biometeorol 49(3):184–188

    CAS  Article  Google Scholar 

  96. Galvagno M, Rossini M, Migliavacca M, Cremonese E, Colombo R, di Cella UM (2013) Seasonal course of photosynthetic efficiency in Larix decidua Mill. in response to temperature and change in pigment composition during senescence. Int J Biometeorol 49(3):184–188

    Google Scholar 

  97. Ge QS, Wang HJ, Dai JH (2014) Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century. Int J Biometeorol 58(4):473–484

    Article  Google Scholar 

  98. Gerst KL, Kellermann JL, Enquist CAF, Rosemartin AH, Denny EG (2016) Estimating the onset of spring from a complex phenology database: trade-offs across geographic scales. Int J Biometeorol 60(3):391–400

    Article  Google Scholar 

  99. Gladalski M, Banbura M, Kalinski A, Markowski M, Skwarska J, Wawrzyniak J, Zielinski P, Banbura J (2014) Extreme weather event in spring 2013 delayed breeding time of Great Tit and Blue Tit. Int J Biometeorol 58(10):2169–2173

    Article  Google Scholar 

  100. Gladalski M, Banbura M, Kalinski A, Markowski M, Skwarska J, Wawrzyniak J, Zielinski P, Banbura J (2016) Effects of extreme thermal conditions on plasticity in breeding phenology and double-broodedness of Great Tits and Blue Tits in central Poland in 2013 and 2014. Int J Biometeorol 60(11):1795–1800

    Article  Google Scholar 

  101. Gomez-Mendoza L, Galicia L, Cuevas-Fernandez ML, Magana V, Gomez G, Palacio-Prieto JL (2008) Assessing onset and length of greening period in six vegetation types in Oaxaca, Mexico, using NDVI-precipitation relationships. Int J Biometeorol 52(6):511–520

    CAS  Article  Google Scholar 

  102. Goodenough AE, Hart AG, Elliot SL (2011) What prevents phenological adjustment to climate change in migrant bird species? Evidence against the “arrival constraint” hypothesis. Int J Biometeorol 55(1):97–102

    Article  Google Scholar 

  103. Gordo O, Sanz JJ (2009) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16(3):1082–1106

    Article  Google Scholar 

  104. Gosling SN, Bryce EK, Dixon PG, Gabriel KMA, Gosling EY, Hanes JM, Hondula DM, Liang L, Mac Lean PAB, Muthers S, Nascimento ST, Petralli M, Vanos JK, Wanka ER (2014) A glossary for biometeorology. Int J Biometeorol 58(2):277–308

    Article  Google Scholar 

  105. Gray DR (2014) Unwanted spatial bias in predicting establishment of an invasive insect based on simulated demographics. Int J Biometeorol 58(5):949–961

    Article  Google Scholar 

  106. Guo L, Dai JH, Ranjitkar S, Yu HY, Xu JC, Luedeling E (2014) Chilling and heat requirements for flowering in temperate fruit trees. Int J Biometeorol 58(6):1195–1206

    Article  Google Scholar 

  107. Hajek ER, Gutiérrez JR (1979) Growing seasons in Chile: observation and prediction. Int J Biometeorol 23(4):311–329

    Article  Google Scholar 

  108. Hall A, Mathews AJ, Holzapfel BP (2016) Potential effect of atmospheric warming on grapevine phenology and post-harvest heat accumulation across a range of climates. Int J Biometeorol 60(9):1405–1422

    Article  Google Scholar 

  109. Harmaa W (1980) Phenological dynamics of arrivals and departures on migratory birds in Cracov, Poland, and the environments in the 19th and 20th century. Int J Biometeorol 24(2):137–140

    Article  Google Scholar 

  110. Haun JR (1976) Development of models for specific crop calendar events. Int J Biometeorol 20(3):261–266

    Article  Google Scholar 

  111. Hayes JT, O’Rourke PA, Terjung WH, Todhunter PE (1982) A feasible crop yield model for worldwide international food production. Int J Biometeorol 26(3):239–257

    Article  Google Scholar 

  112. Hickin RP, Vittum MT (1976) The importance of soil and air temperature in spring phenoclimatic modelling. Int J Biometeorol 20(3):200–206

    Article  Google Scholar 

  113. Hild J (1980) Use of animal and plant phenology for flight safety. Int J Biometeorol 24(3):217–222

    Article  Google Scholar 

  114. Hocevar A, Segulailic A (1991) Modeling relation of 1st shoot emergence in various tree species to meteorological parameters in Slovenia. Int J Biometeorol 24(4):221–225

    Article  Google Scholar 

  115. Holopainen J, Helama S, Lappalainen H, Gregow H (2013) Plant phenological records in northern Finland since the 18th century as retrieved from databases, archives and diaries for biometeorological research. Int J Biometeorol 57(3):423–435

    Article  Google Scholar 

  116. Hopp RJ (1976) Modeling lilac development. Int J Biometeorol 20(3):256–260

    Article  Google Scholar 

  117. Huang J, Ji F (2015) Effects of climate change on phenological trends and seed cotton yields in oasis of arid regions. Int J Biometeorol 59(7):877–888

    Article  Google Scholar 

  118. Huang J, Li J (2015) Effects of climate change on overwintering pupae of the cotton bollworm, Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). Int J Biometeorol 59(7):863–876

    Article  Google Scholar 

  119. Hubalek Z (2016) The North Atlantic Oscillation system and plant phenology. Int J Biometeorol 60(5):749–756

    Article  Google Scholar 

  120. Hudson IL, Keatley MR, Lee SY (2011) Using Self-Organising Maps (SOMs) to assess synchronies: an application to historical eucalypt flowering records. Int J Biometeorol 55(6):879–904

    Article  Google Scholar 

  121. Ibanez I, Primak RB, Miller-Rushing AJ, Ellwood E, Higuchi H, Lee SD, Kobori H, Silander JA (2010) Forecasting phenology under global warming. Philos Trans R Soc B 365(1555):3247–3260

    Article  Google Scholar 

  122. IPCC (2007) Climate Change 2007: Impacts, adaptation and vulnerability. Contribution of working group II to the fourth assessment report of the intergovernmental panel on climate change, Parry ML, Canziani OF, Palutikof JP, van der Linden PJ and Hanson CE (eds), Cambridge University Press, Cambridge, p 976

  123. IPCC (2013) Summary for policymakers. In: Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change Stocker, TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds), Cambridge University Press, Cambridge, pp 1–30

  124. Jenouvrier S, Visser ME (2011) Climate change, phenological shifts, eco-evolutionary responses and population viability: toward a unifying predictive approach. Int J Biometeorol 55(6):905–919

    Article  Google Scholar 

  125. Jochner SC, Sparks TH, Estrella N, Menzel A (2012) The influence of altitude and urbanisation on trends and mean dates in phenology (1980–2009). Int J Biometeorol 56(2):387–394

    Article  Google Scholar 

  126. Jochner S, Sparks TH, Laube J, Menzel A (2016) Can we detect a nonlinear response to temperature in European plant phenology? Int J Biometeorol 60(10):1551–1561

    Article  Google Scholar 

  127. Jones MO, Kimball JS, Small EE, Larson KM (2014) Comparing land surface phenology derived from satellite and GPS network microwave remote sensing. Int J Biometeorol 58(6):1305–1315

    Article  Google Scholar 

  128. Józefaciuk W (1962) Observations on the influence of meteorological conditions on the height increment of forest trees. Int J Biometeorol 4(1):55–61

    Article  Google Scholar 

  129. Juknys R, Kanapickas A, Sveikauskaite I, Sujetoviene G (2016) Response of deciduous trees spring phenology to recent and projected climate change in Central Lithuania. Int J Biometeorol 60(10):1589–1602

    Article  Google Scholar 

  130. Junk J, Ulber B, Vidal S, Eickermann M (2015) Assessing climate change impacts on the rape stem weevil, Ceutorhynchus napi Gyll., based on bias- and non-bias-corrected regional climate change projections. Int J Biometeorol 59(11):1597–1605

    CAS  Article  Google Scholar 

  131. Kalvans A, Bitane M, Kalvane G (2015) Forecasting plant phenology: evaluating the phenological models for Betula pendula and Padus racemosa spring phases, Latvia. Int J Biometeorol 59(2):165–179

    Article  Google Scholar 

  132. Karlsen SR, Solheim I, Beck PSA, Hogda KA, Wielgolaski FE, Tommervik H (2007) Variability of the start of the growing season in Fennoscandia, 1982–2002. Int J Biometeorol 51(6):513–524

    Article  Google Scholar 

  133. Karlsson B (2014) Extended season for northern butterflies. Int J Biometeorol 58(5):691–701

    Article  Google Scholar 

  134. Kasprzyk I (2009) Forecasting the start of Quercus pollen season using several methods—the evaluation of their efficiency. Int J Biometeorol 53(4):345–353

    Article  Google Scholar 

  135. Katz B, Lieth HH (1980) Fungi associated with loblolly pine needles. II Phenology and vertical distribution of fungi in the canopy and first year litter. Int J Biometeorol 24(3):179–197

    Article  Google Scholar 

  136. Keatley MR, Hudson IL (2010) Introduction and overview. In: Phenological research: methods for environmental and climate change analysis. Hudson IL, Keatley MA (eds), pp 1–22

  137. Khan AU, Sharif F, Hamza A (2016) Establishing a baseline on the distribution and pattern of occurrence of Salvadora persica L. with meteorological data and assessing its adaptation in the adjacent warmed-up zones. Int J Biometeorol 60(12):1897–1906

    Article  Google Scholar 

  138. Khwarahm N, Dash J, Atkinson PM, Newnham RM, Skjoth CA, Adams-Groom B, Caulton E, Head K (2014) Exploring the spatio-temporal relationship between two key aeroallergens and meteorological variables in the United Kingdom. Int J Biometeorol 58(4):529–545

    Article  Google Scholar 

  139. Kiss A, Wilson R, Bariska I (2011) An experimental 392-year documentary-based multi-proxy (vine and grain) reconstruction of May-July temperatures for KAszeg, West-Hungary. Int J Biometeorol 55(4):595–611

    Article  Google Scholar 

  140. Klein GH (1995) Time-resolved empirical modeling of seasonal development during phenologically opaque periods. Int J Biometeorol 38(2):70–77

    Article  Google Scholar 

  141. Knapp WW, Dethier BE (1976) Satellite monitoring of phenological events. Int J Biometeorol 20(3):230–239

    Article  Google Scholar 

  142. Kolarova E, Nekovar J, Adamik P (2014) Long-term temporal changes in central European tree phenology (1946–2010) confirm the recent extension of growing seasons. Int J Biometeorol 58(8):1739–1748

    Article  Google Scholar 

  143. Korner C, Basler D (2010) Phenology under global warming. Science 327:1461

    CAS  Article  Google Scholar 

  144. Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44(2):67–75

    CAS  Article  Google Scholar 

  145. Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini S, Ulrich E (2010) Simulating phenological shifts in French temperate forests under two climatic change scenarios and four driving global circulation models. Int J Biometeorol 54(5):563–581

    Article  Google Scholar 

  146. Lee H, Kang WS, Ahn MI, Cho K, Lee JH (2016) Predicting temporal shifts in the spring occurrence of overwintered Scotinophara lurida (Hemiptera: Pentatomidae) and rice phenology in Korea with climate change. Int J Biometeorol 60(1):55–61

    Article  Google Scholar 

  147. Legave JM, Blanke M, Christen D, Giovannini D, Mathieu V, Oger R (2013) A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in Western Europe. Int J Biometeorol 57(2):317–331

    Article  Google Scholar 

  148. Lessard-Therrien M, Davies TJ, Bolmgren K (2014) A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic. Int J Biometeorol 58(4):455–462

    Article  Google Scholar 

  149. Li KN, Yang XG, Tian HQ, Pan SF, Liu ZJ, Lu S (2016) Effects of changing climate and cultivar on the phenology and yield of winter wheat in the North China Plain. Int J Biometeorol 60(1):21–32

    Article  Google Scholar 

  150. Liang L, Schwartz M (2014) Testing a growth efficiency hypothesis with continental-scale phenological variations of common and cloned plants. Int J Biometeorol 58(8):1789–1797

    Article  Google Scholar 

  151. Liang SZ, Shi P, Li HZ (2016) Urban spring phenology in the middle temperate zone of China: dynamics and influence factors. Int J Biometeorol 60(4):513–544

    Article  Google Scholar 

  152. Lieth HH (1976) Contributions to phenology seasonality research. Int J Biometeorol 20(3):197–199

    Article  Google Scholar 

  153. Liu GH, Tang QH, Liu XC, Dai JH, Zhang XZ, Ge QS, Tang Y (2014) Spatiotemporal analysis of ground-based woody plant leafing in response to temperature in temperate eastern China. Int J Biometeorol 58(7):1583–1592

    Article  Google Scholar 

  154. Liu LL, Zhang XY, Donnelly A, Liu XJ (2016) Interannual variations in spring phenology and their response to climate change across the Tibetan Plateau from 1982 to 2013. Int J Biometeorol 60(10):1563–1575

    Article  Google Scholar 

  155. Lou WP, Sun SL, Wu LH, Sun K (2015) Effects of climate change on the economic output of the Longjing-43 tea tree, 1972–2013. Int J Biometeorol 59(5):593–603

    Article  Google Scholar 

  156. Luedeling E, Brown PH (2011) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55(3):411–421

    Article  Google Scholar 

  157. Luedeling E, Kunz A, Blanke MM (2013) Identification of chilling and heat requirements of cherry trees—a statistical approach. Int J Biometeorol 57(5):679–689

    Article  Google Scholar 

  158. Ma T, Zhou CG (2012) Climate-associated changes in spring plant phenology in China. Int J Biometeorol 56(2):269–275

    Article  Google Scholar 

  159. Ma SX, Churkina G, Trusilova K (2012) Investigating the impact of climate change on crop phenological events in Europe with a phenology model. Int J Biometeorol 56(4):749–763

    Article  Google Scholar 

  160. Maak K, von Storch H (1997) Statistical downscaling of monthly mean air temperature to the beginning of flowering of Galanthus nivalis L. in Northern Germany. Int J Biometeorol 41(1):5–12

    Article  Google Scholar 

  161. Mac Mynowski DP, Root TL (2007) Climate and the complexity of migratory phenology: sexes, migratory distance, and arrival distributions. Int J Biometeorol 51(5):361–373

    Article  Google Scholar 

  162. Marchi S, Guidotti D, Ricciolini M, Petacchi R (2016) Towards understanding temporal and spatial dynamics of Bactrocera oleae (Rossi) infestations using decade-long agrometeorological time series. Int J Biometeorol 60(11):1681–1694

    Article  Google Scholar 

  163. Matulla C, Scheifinger H, Menzel A, Koch E (2003) Exploring two methods for statistical downscaling of Central European phenological time series. Int J Biometeorol 48(2):56–64

    CAS  Article  Google Scholar 

  164. Matzneller P, Blumel K, Chmielewski FM (2014) Models for the beginning of sour cherry blossom. Int J Biometeorol 58(5):703–715

    Article  Google Scholar 

  165. Mechlia NB, Carroll JJ (1989a) Agroclimatic modeling for the simulation of phenology, yield and quality of crop production. 1. Citrus response formulation. Int J Biometeorol 33(1):36–51

    Article  Google Scholar 

  166. Mechlia NB, Carroll JJ (1989b) Agroclimatic modeling for the simulation of phenology, yield and quality of crop production 2. Citrus response formulation. Int J Biometeorol 33(1):52–65

    Article  Google Scholar 

  167. Medvigy D, Kim SH, Kim J, Kafatos MC (2016) Dynamically downscaling predictions for deciduous tree leaf emergence in California under current and future climate. Int J Biometeorol 60(7):935–944

    Article  Google Scholar 

  168. Menzel A (2000) Trends in phenological phases in Europe between 1951 and 1996. Int J Biometeorol 44(2):76–81

    CAS  Article  Google Scholar 

  169. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    CAS  Article  Google Scholar 

  170. Menzel A, Sparks TH, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kübler K, Bissolli P, Braslavská O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl Å, Defila C, Donnelly A, Filella Y, Jatczak K, Måge F, Mestre A, Nordli Ø, Peñuelas J, Pirinen R, Remišová V, Scheifinger H, Striz M, Suskin A, van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Change Biol 12:1–8

    Article  Google Scholar 

  171. Menzel A, Estrella N, Heitland W, Susnik A, Schleip C, Dose V (2008) Bayesian analysis of the species-specific lengthening of the growing season in two European countries and the influence of an insect pest. Int J Biometeorol 52(3):209–218

    Article  Google Scholar 

  172. Menzel A, Seifert H, Estrella N (2011) Effects of recent warm and cold spells on European plant phenology. Int J Biometeorol 55(6):921–932

    Article  Google Scholar 

  173. Migliavacca M, Cremonese E, Colombo R, Busetto L, Galvagno M, Ganis L, Meroni M, Pari E, Rossini M, Siniscalco C, di Cella UM (2008) European larch phenology in the Alps: can we grasp the role of ecological factors by combining field observations and inverse modelling? Int J Biometeorol 52(7):587–605

    CAS  Article  Google Scholar 

  174. Miller-Rushing AJ, Primack RB (2008) Global warming and flowering times in Thoreau’s Concord: a community perspective. Ecology 89:332–341

    Article  Google Scholar 

  175. Mimet A, Pellissier V, Quenol H, Aguejdad R, Dubreuil V, Roze F (2009) Urbanisation induces early flowering: evidence from Platanus acerifolia and Prunus cerasus. Int J Biometeorol 53(3):287–298

    CAS  Article  Google Scholar 

  176. Morecroft MD, Stokes VJ, Morison JIL (2003) Seasonal changes in the photosynthetic capacity of canopy oak (Quercus robur) leaves: the impact of slow development on annual carbon uptake. Int J Biometeorol 47(4):221–226

    CAS  Article  Google Scholar 

  177. Morin X, Lechowicz MJ, Augspurger C, O’Keefe J, Viner D, Chuine I (2008) Leaf phenology in 22 North American tree species during the 21st century. Glob Chang Biol 15(4):961–975

    Article  Google Scholar 

  178. Müller W (1976) Seasonal locust development potential in the Niger area analyzed through ecoclimatological interpretation of satellite images. Int J Biometeorol 20(3):249–255

    Article  Google Scholar 

  179. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 368:698–702

    Article  Google Scholar 

  180. Nagai S, Saitoh TM, Nasahara KN, Suzuki R (2015) Review: Advances in in situ and satellite phenological observations in Japan. Int J Biometeorol 59(1):47–54

    Article  Google Scholar 

  181. Nagai S, Nasahara KN, Inoue T, Saitoh TM, Suzuki R (2016) Review: Advances in in situ and satellite phenological observations in Japan. Int J Biometeorol 60(4):615–627

    Article  Google Scholar 

  182. Nagy L, Kreyling J, Gellesch E, Beierkuhnlein C, Jentsch A (2013) Recurring weather extremes alter the flowering phenology of two common temperate shrubs. Int J Biometeorol 57(4):579–588

    CAS  Article  Google Scholar 

  183. Neumann PA, Matzarakis A (2014) Estimation of wine characteristics using a modified Heliothermal index in Baden-Wurttemberg, SW Germany. Int J Biometeorol 58(3):407–415

    Article  Google Scholar 

  184. Newnham RM, Sparks TH, Skjoth CA, Head K, Adams-Groom B, Smith M (2013) Pollen season and climate: is the timing of birch pollen release in the UK approaching its limit? Int J Biometeorol 37(3):391–400

    Article  Google Scholar 

  185. Newson SE, Moran NJ, Musgrove AJ, Pearce-Higgins JW, Gillings S, Atkinson PW, Miller R, Grantham MJ, Baillie S (2016) Long-term changes in the migration phenology of UK breeding birds detected by large-scale citizen science recording schemes. Ibis 158(3):481–495

    Article  Google Scholar 

  186. Nilsson ALK, Stige LC, Jerstad K, Rostad OW, Slagsvold T, Knudsen E, Walseng B, Stenseth NC (2011) To make the most of what we have: extracting phenological data from nestling measurements. Int J Biometeorol 55(6):797–804

    Article  Google Scholar 

  187. Nordli O, Wielgolaski FE, Bakken AK, Hjeltnes SH, Mage F, Sivle A, Skre O (2008) Regional trends for bud burst and flowering of woody plants in Norway as related to climate change. Int J Biometeorol 52(7):625–639

    CAS  Article  Google Scholar 

  188. Obrebska-Starklowa B (1981) An approach of the pheno-climatic typlology and its pattern in the mountainous areas of Poland. Int J Biometeorol 25(3):269–279

    Article  Google Scholar 

  189. Oguntunde PG, van de Giesen N (2004) Crop growth and development effects on surface albedo for maize and cowpea fields in Ghana, West Africa. Int J Biometeorol 49(2):106–112

    Article  Google Scholar 

  190. Ohashi Y, Kawakami H, Shigeta Y, Ikeda H, Yamamoto N (2012) The phenology of cherry blossom (Prunus yedoensis “Somei-yoshino”) and the geographic features contributing to its flowering. Int J Biometeorol 56(5):903–914

    Article  Google Scholar 

  191. Orlandi F, Garcia-Mozo H, Galan C, Romano B, de la Guardia CD, Ruiz L, Trigo MD, Dominguez-Vilches E, Fornaciari M (2010) Olive flowering trends in a large Mediterranean area (Italy and Spain). Int J Biometeorol 54(2):151–163

    Article  Google Scholar 

  192. Orlandi F, Ruga L, Bonofiglio T, Romano B, Fornaciari M (2014) Fifteen-year phenological plant species and meteorological trends in central Italy. Int J Biometeorol 58(5):661–667

    CAS  Article  Google Scholar 

  193. Oteros J, Garcia-Mozo H, Hervas-Martinez C, Galan C (2013) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57(4):545–555

    CAS  Article  Google Scholar 

  194. Pangtey YPS, Rawal RS, Bankoti NS, Samant SS (1990) Phenology of high-altitude plants of Kumaun in Central Himalaya, India. Int J Biometeorol 34(2):122–127

    Article  Google Scholar 

  195. Pantis JD, Sgardelis SP, Stamou GP (1994) Asphodelus-aestivus, an example of synchronization with the climate periodicity. Int J Biometeorol 38(1):28–32

    Article  Google Scholar 

  196. Park IW (2012) Digital herbarium archives as a spatially extensive, taxonomically discriminate phenological record; a comparison to MODIS satellite imagery. Int J Biometeorol 56(6):1179–1182

    Article  Google Scholar 

  197. Park IW, Schwartz MD (2015) Long-term herbarium records reveal temperature-dependent changes in flowering phenology in the southeastern USA. Int J Biometeorol 59(3):347–355 51(4):295–305

    Article  Google Scholar 

  198. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669

    Article  Google Scholar 

  199. Parmesan C (2007) Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob Chang Biol 13(9):1860–1872

    Article  Google Scholar 

  200. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    CAS  Article  Google Scholar 

  201. Pitt JPW, Regniere J, Worner S (2007) Risk assessment of the gypsy moth, Lymantria dispar (L), in New Zealand based on phenology modelling. Int J Biometeorol 59(3):347–355

    Google Scholar 

  202. Poikolainen J, Tolvanen A, Karhu J, Kubin E (2016) Seventeen-year trends in spring and autumn phenophases of Betula pubescens in a boreal environment. Int J Biometeorol 60(8):1227–1236

    Article  Google Scholar 

  203. Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woods plants: from trees to ecosystems. New Phytol 191(14):926–941

    Article  Google Scholar 

  204. Polgar CA, Primack RB, Dukes JS, Schaaf C, Wang ZS, Hoeppner SS (2014) Tree leaf out response to temperature: comparing field observations, remote sensing, and a warming experiment. Int J Biometeorol 58(6):1251–1257

    Article  Google Scholar 

  205. Pompa-Garcia M, Miranda-Aragon L, Aguirre-Salado CA (2015) Tree growth response to ENSO in Durango, Mexico. Int J Biometeorol 59(1):89–97

    Article  Google Scholar 

  206. Pope KS, Dose V, Da Silva D, Brown PH, DeJong TM (2015) Nut crop yield records show that budbreak-based chilling requirements may not reflect yield decline chill thresholds. Int J Biometeorol 59(6):707–715

    Article  Google Scholar 

  207. Pudas E, Leppala M, Tolvanen A, Poikolainen J, Venalainen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. Int J Biometeorol 52(4):251–259

    Article  Google Scholar 

  208. Ranjitkar S, Luedeling E, Shrestha KK, Guan KY, Xu JC (2013) Flowering phenology of tree rhododendron along an elevation gradient in two sites in the Eastern Himalayas. Int J Biometeorol 57(2):225–240

    Article  Google Scholar 

  209. Rawal DS, Kasel S, Keatley MR, Aponte C, Nitschke CR (2014) Environmental effects on growth phenology of co-occurring Eucalyptus species. Int J Biometeorol 58(4):427–442

    Article  Google Scholar 

  210. Rawal DS, Kasel S, Keatley MR, Nitschke CR (2015) Environmental effects on germination phenology of co-occurring eucalypts: implications for regeneration under climate change. Int J Biometeorol 59(9):1237–1252

    Article  Google Scholar 

  211. Rea J, Ashley M (1976) Phenological evaluations using Landsat-1 sensors. Int J Biometeorol 20(3):240–248

    Article  Google Scholar 

  212. Rea R, Eccel E (2006) Phenological models for blooming of apple in a mountainous region. Int J Biometeorol 51(1):1–16

    Article  Google Scholar 

  213. Real AC, Borges J, Cabral JS, Jones GV (2015) Partitioning the grapevine growing season in the Douro Valley of Portugal: accumulated heat better than calendar dates. Int J Biometeorol 59(8):1045–1059

    Article  Google Scholar 

  214. Regniere J, Sharov A (1999) Simulating temperature-dependent ecological processes at the sub-continental scale: male gypsy moth flight phenology as an example. Int J Biometeorol 42(3):146–152

    Article  Google Scholar 

  215. Rezende LFC, Arenque BC, Aidar ST, Moura MSB, Von Randow C, Tourigny E, Menezes RSC, Ometto JPHB (2016) Evolution and challenges of dynamic global vegetation models for some aspects of plant physiology and elevated atmospheric CO2. Int J Biometeorol 60(7):945–955

    CAS  Article  Google Scholar 

  216. Richardson AD, Bailey AS, Denney EG, Martin CW, Keenan TF, O’Keefe J (2006) Phenology of a northern hardwood forest canopy. Glob Chang Biol 12(7):1174–1188

    Article  Google Scholar 

  217. Richardson AD, Keenan TF, Migliavacca M, Ryu Y, Sonnentag O, Toomey M (2013) Climate change, phenology, and phonological control of vegetation feedbacks to the climate system. Agric For Meteorol 169(15):156–173

    Article  Google Scholar 

  218. Roberts AMI (2008) Exploring relationships between phenological and weather data using smoothing. Int J Biometeorol 52(6):436–470

    Article  Google Scholar 

  219. Roberts AMI (2012) Comparison of regression methods for phenology. Int J Biometeorol 56(4):707–717

    Article  Google Scholar 

  220. Robertson GW (1968) A biometeorological time scale for a cereal crop involving day and night temperatures and photoperiod. Int J Biometeorol 12(3):191–223

    Article  Google Scholar 

  221. Roetzer T, Wittenzeller M, Haeckel H, Nekovar J (2000) Phenology in central Europe—differences and trends of spring phenophases in urban and rural areas. Int J Biometeorol 44(2):60–66

    CAS  Article  Google Scholar 

  222. Roetzer T, Grote R, Pretzsch H (2004) The timing of bud burst and its effect on tree growth. Int J Biometeorol 28(3):109–118

    Article  Google Scholar 

  223. Roetzer T, Leuchner M, Nunn AJ (2010) Simulating stand climate, phenology, and photosynthesis of a forest stand with a process-based growth model. Int J Biometeorol 54(4):449–464

    Article  Google Scholar 

  224. Rojo J, Perez-Badia R (2015) Models for forecasting the flowering of Cornicabra olive groves. Int J Biometeorol 59(11):1547–1556

    Article  Google Scholar 

  225. Root TL, Price JT, Schneider SH, Rosenzweig D, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    CAS  Article  Google Scholar 

  226. Rosenzweig C, Karoly D, Vicarelli M, Neofotis P, Wu O, Casassa G, Menze A, Root TL, Estrella N, Seguin B, Tryjanowski P, Liu C, Rawlins S, Imeson A (2008) Attributing physical and biological impacts to anthropogenic climate change. Nature 453:353–357

    CAS  Article  Google Scholar 

  227. Rossi S (2015) Local adaptations and climate change: converging sensitivity of bud break in black spruce provenances. Int J Biometeorol 59(7):827–835

    Article  Google Scholar 

  228. Roy DB, Asher J (2003) Spatial trends in the sighting dates of British butterflies. Int J Biometeorol 47(4):188–192

    CAS  Article  Google Scholar 

  229. Rubolini D, Ambrosini R, Caffi M, Brichetti P, Armiraglio S, Saino N (2007) Long-term trends in first arrival and first egg laying dates of some migrant and resident bird species in northern Italy. Int J Biometeorol 51(6):553–563

    Article  Google Scholar 

  230. Russo JM, Knapp WW (1976) A numerical simulation of plant growth. Int J Biometeorol 20(3):276–285

    Article  Google Scholar 

  231. Salinger MJ, Baldi M, Grifoni D, Jones G, Bartolini G, Cecchi S, Messeri G, Marta A, Orlandini S, Dalu GA, Maracchi G (2015) Seasonal differences in climate in the Chianti region of Tuscany and the relationship to vintage wine quality. Int J Biometeorol 59(12):1799–1811

    Article  Google Scholar 

  232. Santos JA, Malheiro AC, Karremann MK, Pinto JG (2011) Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int J Biometeorol 55(2):119–131

    Article  Google Scholar 

  233. Schaber J, Badeck FW (2003) Physiology-based phenology models for forest tree species in Germany. Int J Biometeorol 47(4):193–201

    Article  Google Scholar 

  234. Scharlemann JPW (2001) Museum egg collections as stores of long-term phenological data. Int J Biometeorol 45(4):208–211

    CAS  Article  Google Scholar 

  235. Schneemilch M, Kokkinn M, Williams CR (2012) Flowering timing prediction in Australian native understorey species (Acrotriche R. Br Ericaceae) using meteorological data. Int J Biometeorol 56(1):95–105

    Article  Google Scholar 

  236. Schuster C, Kirchner M, Jakobi G, Menzel A (2014) Frequency of inversions affects senescence phenology of Acer pseudoplatanus and Fagus sylvatica. Int J Biometeorol 58(4):485–498

    Article  Google Scholar 

  237. Schwartz MD (1994) Monitoring global change with phenology—the case of the spring green wave. Int J Biometeorol 38(1):18–22

    Article  Google Scholar 

  238. Schwartz MD (1997) In: Phenology in seasonal climates. Lieth H, Schwartz MD (eds), pp 23–38

  239. Schwartz MD (1999) Advancing to full bloom: planning phenological research for the 21st century. Int J Biometeorol 42(3):113–118

    Article  Google Scholar 

  240. Schwartz MD, Reiter BE (2000) Changes in North American spring. Int J Climatol 20(8):929–932

    Article  Google Scholar 

  241. Schwartz MD, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12(2):343–351

    Article  Google Scholar 

  242. Schwartz MD, Hanes JM, Liang L (2014) Separating temperature from other factors in phenological measurements. Int J Biometeorol 58(7):1699–1704

    Article  Google Scholar 

  243. Sepp M, Saue T (2012) Correlations between the modelled potato crop yield and the general atmospheric circulation. Int J Biometeorol 56(4):591–603

    Article  Google Scholar 

  244. Shelford VE (1961) Paired factors of the physical environment operating on the sensitive periods in the life history of organisms. Int J Biometeorol 5(2):45–58

    Google Scholar 

  245. Shutova E, Wielgolaski FE, Karlsen SR, Makarova O, Berlina N, Filimonova T, Haraldsson E, Aspholm PE, Flo L, Hogda KA (2006) Growing seasons of Nordic mountain birch in northernmost Europe as indicated by long-term field studies and analyses of satellite images. Int J Biometeorol 51(2):155–166

    CAS  Article  Google Scholar 

  246. Sinelschikova A, Kosarev V, Panov I, Baushev AN (2007) The influence of wind conditions in Europe on the advance in timing of the spring migration of the song thrush (Turdus philomelos) in the south-east Baltic region. Int J Biometeorol 51(5):431–440

    Article  Google Scholar 

  247. Siniscalco C, Caramiello R, Migliavacca M, Busetto L, Mercalli L, Colombo R, Richardson AD (2015) Models to predict the start of the airborne pollen season. Int J Biometeorol 59(7):837–848

    Article  Google Scholar 

  248. Skaar E (1980) Application of meteorological data to agroclimatological mapping. Int J Biometeorol 24(1):3–12

    Article  Google Scholar 

  249. Skjelvåg AO (1980) A crop-weather analysis model applied to field bean. Int J Biometeorol 24(4):301–313

    Article  Google Scholar 

  250. Smith TJ, Hayden BP (1984) Snow goose migration phenology is related to extratropical storm climate. Int J Biometeorol 28(3):225–233

    Article  Google Scholar 

  251. Snyder RL, Spano D, Cesaraccio C, Duce P (1999) Determining degree-day thresholds from field observations. Int J Biometeorol 42(4):177–182

    Article  Google Scholar 

  252. Snyder RL, Spano D, Duce P, Cesaraccio C (2001) Temperature data for phenological models. Int J Biometeorol 45(4):178–183

    CAS  Article  Google Scholar 

  253. Spano D, Cesaraccio C, Duce P, Snyder RL (1999) Phenological stages of natural species and their use as climate indicators. Int J Biometeorol 42(3):124–133

    Article  Google Scholar 

  254. Sparks TH (1999) Phenology and the changing pattern of bird migration in Britain. Int J Biometeorol 42(3):134–138

    Article  Google Scholar 

  255. Sparks TH, Carey PD (1995) The response of species to climate over two centuries: an analysis of the Marsham phenological record, 1736–1947. J Ecol 83(2):321–329

    Article  Google Scholar 

  256. Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44(2):82–87

    CAS  Article  Google Scholar 

  257. Sparks TH, Huber K, Croxton PJ (2006) Plant development scores from fixed-date photographs: the influence of weather variables and recorder experience. Int J Biometeorol 50(5):275–279

    CAS  Article  Google Scholar 

  258. Sparks TH, Gorska-Zajaczkowska M, Wojtowicz W, Tryjanowski P (2011) Phenological changes and reduced seasonal synchrony in western Poland. Int J Biometeorol 55(3):447–453

    Article  Google Scholar 

  259. Sparks TH, Mizera T, Wojtowicz W, Tryjanowski P (2012) Synchrony in the phenology of a culturally iconic spring flower. Int J Biometeorol 56(2):407–409

    Article  Google Scholar 

  260. Starr JR, Thomas RJ (1980) Parasitic gastroenteritis in lambs—a model for estimating the timing of the larval emergence peak. Int J Biometeorol 24(3):223–229

    CAS  Article  Google Scholar 

  261. Studer S, Stockli R, Appenzeller C, Vidale PL (2007) A comparative study of satellite and ground-based phenology. Int J Biometeorol 51(5):405–414

    CAS  Article  Google Scholar 

  262. Szabo B, Vincze E, Czucz B (2016) Flowering phenological changes in relation to climate change in Hungary. Int J Biometeorol 60(9):1347–1356

    Article  Google Scholar 

  263. Tauber MJ, Tauber CA (1976) Physiological responses underlying the timing of vernal activities in insects. Int J Biometeorol 20(3):218–222

    Article  Google Scholar 

  264. Terjung WH, Hayes JT, O’Rourke PA, Todhunter PE (1984a) Yield responses of crops to changes in environment and management practices. Model sensitivity analysis. I. Maize. Int J Biometeorol 28(4):261–278

    Article  Google Scholar 

  265. Terjung WH, Hayes JT, O’Rourke PA, Todhunter PE (1984b) Yield responses of crops to changes in environment and management practices. Model sensitivity analysis. II. Rice, wheat and potato. Int J Biometeorol 28(4):261–278

    Article  Google Scholar 

  266. Thackeray S, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Motham MC, Brereton TM, Bright PW, Carvalho L, Clutton-Brock T, Dawson A, Edwards M, Ellito JM, Harrington R, Johns D, Jones ID, Jones JT, Leech DI, Ory DB, Scott WA, Smith M, Smithers RK, Winfield IJ, Wanless S (2010) Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob Chang Biol 16(12):3304–3313

    Article  Google Scholar 

  267. Thompson R, Clark RM (2006) Spatio-temporal modelling and assessment of within-species phenological variability using thermal time methods. Int J Biometeorol 50(5):312–322

    CAS  Article  Google Scholar 

  268. Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45(4):184–190

    CAS  Article  Google Scholar 

  269. Uddling J, Pleijel H (2006) Changes in stomatal conductance and net photosynthesis during phenological development in spring wheat: implications for gas exchange modelling. Int J Biometeorol 51(1):37–48

    Article  Google Scholar 

  270. Utaaker K (1980) Local climates and growth climates of the Sognefjord region. Int J Biometeorol 24(1):13–22

    Article  Google Scholar 

  271. van Vliet AJH, de Groot RS, Bellens Y, Braun P, Bruegger R, Bruns E, Clevers J, Estreguil C, Flechsig M, Jeanneret F, Maggi M, Martens P, Menne B, Menzel A, Sparks T (2003) The European Phenology Network. Int J Biometeorol 47(4):202–212

    Article  Google Scholar 

  272. van Vliet AJH, Bron WA, Mulder S (2014) The how and why of societal publications for citizen science projects and scientists. Int J Biometeorol 58(4):565–577

    Article  Google Scholar 

  273. Visser ME, Hollerman LJM (2001) Warmer springs disrupt the synchrony of oak and winter moth phenology. Proc R Soc B 268:289–294

    CAS  Article  Google Scholar 

  274. Waggoner PE (1976) The mean and standard deviation of development time. Int J Biometeorol 20(3):271–275

    Article  Google Scholar 

  275. Walkovszky A (1998) Changes in phenology of the locust tree (Robinia pseudoacacia L) in Hungary. Int J Biometeorol 41(4):155–160

    Article  Google Scholar 

  276. Walter GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin J-M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    Article  CAS  Google Scholar 

  277. Wang GM, Hobbs NT, Galbraith H, Giesen KM (2002) Signatures of large-scale and local climates on the demography of white-tailed ptarmigan in Rocky Mountain National Park, Colorado, USA. Int J Biometeorol 46(4):197–201

    Article  Google Scholar 

  278. Wang CZ, Guo HD, Zhang L, Liu SY, Qiu YB, Sun ZC (2015a) Assessing phenological change and climatic control of alpine grasslands in the Tibetan Plateau with MODIS time series. Int J Biometeorol 59(1):11–23

    Article  Google Scholar 

  279. Wang HJ, Ge QS, Dai JH, Tao ZX (2015b) Geographical pattern in first bloom variability and its relation to temperature sensitivity in the USA and China. Int J Biometeorol 59(8):961–969

    Article  Google Scholar 

  280. Wang HJ, Rutishauser T, Tao ZX, Zhong SY, Ge QS, Dai JH (2016) Reply to communications by Fu et al. International Journal of Biometeorology. Int J Biometeorol 60(12):2005–2007

    Article  Google Scholar 

  281. White MA, De Beurs KM, Didan K, Inouye DW, Richardson AD, Jensen OP, O’Keefe J, Zhang G, Nemani RR, Van Leeuwen WJD, Browy JF, De Wit A, Schaepman M, Lin X, Dettinger M, Bailey AS, Kimball J, Schwartz MD, Baldocchi DD, Lee JT, Lauenroth WK (2009) Intercomparison, interpretation and assessment of spring phenology in North America estimated from remote sensing from 1982–2006. Glob Chang Biol 15(10):2335–2359

    Article  Google Scholar 

  282. Wielgolaski F-E (1999) Starting dates and basic temperatures in phenological observations of plants. Int J Biometeorol 42(3):158–168

    Article  Google Scholar 

  283. Wielgolaski F-E (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45(4):196–202

    CAS  Article  Google Scholar 

  284. Wielgolaski F-E, Nordli O, Karlsen SR, O’Neill B (2011) Plant phenological variation related to temperature in Norway during the period 1928–1977. Int J Biometeorol 55(6):819–830

    Article  Google Scholar 

  285. Williams GDV (1974a) Deriving a biophotothermal time scale for barley. Int J Biometeorol 18(1):57–69

    Article  Google Scholar 

  286. Williams GDV (1974b) A critical evaluation of a biophotothermal time scale for barley. Int J Biometeorol 18(4):259–271

    Article  Google Scholar 

  287. Wolfe DW, Schwartz MD, Lakso AN, Otsuki Y, Pool RM, Shaulis NJ (2005) Climate change and shifts in spring phenology of three horticultural woody perennials in northeastern USA. Int J Biometeorol 49(5):303–309

    Article  Google Scholar 

  288. Wolkovitch EM, Cook BI, Allen JM, Crimmins TM, Betancourt JL, Se T, Pau S, Regetz J, Davies TJ, Kraft NJB, Ault TR, Bolmgren K, Mazer SJ, McCabe GJ, McGill BJ, Parmesan C, Salamin N, Sacwatrz MD, Cleland EE (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    Google Scholar 

  289. Xiao DP, Tao FL, Liu YJ, Shi WJ, Wang M, Liu FS, Zhang S, Zhu Z (2013) Observed changes in winter wheat phenology in the North China Plain for 1981–2009. Int J Biometeorol 57(2):275–285

    Article  Google Scholar 

  290. Yoshifuji N, Igarashi Y, Tanaka N, Tanaka K, Sato T, Tantasirin C, Suzuki M (2014) Inter-annual variation in the response of leaf-out onset to soil moisture increase in a teak plantation in northern Thailand. Int J Biometeorol 58(9):2025–2029

    Article  Google Scholar 

  291. Yu R, Schwartz MD, Donnelly A, Liang L (2016) An observation-based progression modeling approach to spring and autumn deciduous tree phenology. Int J Biometeorol 60(3):335–349

    Article  Google Scholar 

  292. Zhang Z, Song X, Chen Y, Wang P, Wei X, Tao FL (2015) Dynamic variability of the heading-flowering stages of single rice in China based on field observations and NDVI estimations. Int J Biometeorol 59(5):643–655

    Article  Google Scholar 

  293. Zhu LK, Meng JJ (2015) Determining the relative importance of climatic drivers on spring phenology in grassland ecosystems of semi-arid areas. Int J Biometeorol 59(2):237–248

    Article  Google Scholar 

  294. Zhu LK, Southworth J, Meng JJ (2015) Comparison of the driving forces of spring phenology among savanna landscapes by including combined spatial and temporal heterogeneity. Int J Biometeorol 59(10):1373–1384

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for their very thorough review of this work and for their insightful and informative comments which greatly improved this manuscript.

Vegetation further subdivided into the following: T trees, FT fruit trees, V unspecified vegetation, Ag agricultural crop, P pollen, S shrub, O olive tree, G grapevine, Gr grassland, H herbarium records. Animal further subdivided into the following: B bird, F fish, Bu butterfly, I insect, A range of animals

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alison Donnelly.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Donnelly, A., Yu, R. The rise of phenology with climate change: an evaluation of IJB publications. Int J Biometeorol 61, 29–50 (2017). https://doi.org/10.1007/s00484-017-1371-8

Download citation

Keywords

  • Phenology
  • Publications
  • Climate change
  • International Journal of Biometeorology