Skip to main content
Log in

Temporal coherence of phenological and climatic rhythmicity in Beijing

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

Using woody plant phenological data in the Beijing Botanical Garden from 1979 to 2013, we revealed three levels of phenology rhythms and examined their coherence with temperature rhythms. First, the sequential and correlative rhythm shows that occurrence dates of various phenological events obey a certain time sequence within a year and synchronously advance or postpone among years. The positive correlation between spring phenophase dates is much stronger than that between autumn phenophase dates and attenuates as the time interval between two spring phenophases increases. This phenological rhythm can be explained by positive correlation between above 0 °C mean temperatures corresponding to different phenophase dates. Second, the circannual rhythm indicates that recurrence interval of a phenophase in the same species in two adjacent years is about 365 days, which can be explained by the 365-day recurrence interval in the first and last dates of threshold temperatures. Moreover, an earlier phenophase date in the current year may lead to a later phenophase date in the next year through extending recurrence interval. Thus, the plant phenology sequential and correlative rhythm and circannual rhythm are interacted, which mirrors the interaction between seasonal variation and annual periodicity of temperature. Finally, the multi-year rhythm implies that phenophase dates display quasi-periodicity more than 1 year. The same 12-year periodicity in phenophase and threshold temperature dates confirmed temperature controls of the phenology multi-year rhythm. Our findings provide new perspectives for examining phenological response to climate change and developing comprehensive phenology models considering temporal coherence of phenological and climatic rhythmicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahas H, Aasa A (2003) Developing comparative phenological calendars. In: Schwartz MD (ed) Phenology: an integrative environmental Science. Kluwer Academic Publishers, Dordrecht, pp 301–318

    Chapter  Google Scholar 

  • Chen XQ (1994) Untersuchung zur zeitlich-räumlichen Ähnlichkeit von phänologischen und klimatologischen Parametern in Westdeutschland und zum Einfluß geoökologischer Faktoren auf die phänologische Entwicklung im Gebiet des Taunus. Selbstverlag des Deutschen Wetterdienstes, Offenbach am Main, pp 116

  • Chen XQ, Pan WF (2002) Relationships among phenological growing season, time-integrated normalized difference vegetation index and climate forcing in the temperate region of eastern China. Int J Climatol 22:1781–1792

    Article  Google Scholar 

  • Chen XQ, Xu L (2012) Phenological responses of Ulmus pumila (Siberian Elm) to climate change in the temperate zone of China. Int J Biometeorol 56:695–706

    Article  Google Scholar 

  • Chen XQ (2017) Spatiotemporal processes of plant phenology: simulation and prediction. Springer-Verlag GmbH Germany, Berlin

    Book  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  • Chuine I, Kramer K, Hänninen H (2003) Plant development models. In: Schwartz MD (ed) Phenology: an integrative environmental science. Kluwer Academic Publishers, Dordrecht, pp 217–235

    Chapter  Google Scholar 

  • Cleland EE, Chiariello NR, Loarie SR, Mooney HA, Field CB (2006) Diverse responses of phenology to global changes in a grassland ecosystem. Proc Natl Acad Sci U S A 103:13740–21374

    Article  CAS  Google Scholar 

  • Delpierre N, Dufrêne E, Soudani K, Ulrich E, Cecchini S, Boé J, François C (2009) Modelling interannual and spatial variability of leaf senescence for three deciduous tree species in France. Agric For Meteorol 149:938–948

    Article  Google Scholar 

  • Dufrêne E, Davi H, François C, Maire G, Dantec VL, Granier A (2005) Modelling carbon and water cycles in a beech forest: part I: model description and uncertainty analysis on modelled NEE. Ecol Model 185:407–436

    Article  Google Scholar 

  • Editorial Committee of the China's agriculture encyclopedia (1986) The China's agriculture encyclopedia: agricultural meteorology. Agriculture Press, Beijing, pp170

  • Fu YSH, Campioli M, Vitasse Y, De Boeck HJ, van den Berge J, Abdelgawad H, Asard H, Piao SL, Deckmyn G, Janssens IA (2014) Variation in leaf flushing date influences autumnal senescence and next year's flushing date in two temperate tree species. Proc Natl Acad Sci U S A 111:7355–7360

    Article  CAS  Google Scholar 

  • Gordo O, Sanz JJ (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Change Biol 16:1082–1106

    Article  Google Scholar 

  • Heide O, Prestrud A (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  Google Scholar 

  • Hudson IL, Keatley MR (2010) Singular spectrum analysis: climatic niche identification. In: Hudson IL, Keatley MR (eds) Phenological research: methods for environmental and climate change analysis. Springer, Dordrecht, pp 393–424

    Chapter  Google Scholar 

  • Jiang JM, Zhang DE, Fraedrich K (1997) Historic climate variability of wetness in East China (960-1992): a wavelet analysis. Int J Climatol 17:969–981

    Article  Google Scholar 

  • Keeling CD, Chin JFS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149

    Article  CAS  Google Scholar 

  • Kramer K (1994) Selecting a model to predict the onset of growth of Fagus sylvatica. J Appl Ecol 31:172–181

    Article  Google Scholar 

  • Matsumoto K, Ohta T, Irasawa M, Nakamura T (2003) Climate change and extension of the Ginkgo biloba L. growing season in Japan. Glob Change Biol 9:1634–1642

    Article  Google Scholar 

  • Menzel A (2003) Plant phenological anomalies in Germany and their relation to air temperature and NAO. Clim Chang 57:243–263

    Article  Google Scholar 

  • Margary ID (1926) The Marsham phenological record in Norfolk, 1736–1925, and some others. Quart J Roy Meteorol Soc 22:27–54

    Google Scholar 

  • Newman JE, Beard JB (1962) Phenological observations: the dependent variable in bioclimatic and agrometeorological studies. Agron J 54:399–403

    Article  Google Scholar 

  • Larcher W (1975) Physiological plant ecology. Springer, Berlin Heidelberg New York, pp219–234

  • Peñuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324:887–888

    Article  Google Scholar 

  • Pfau R (1964) Varianz- und Korrelationsanalytische Untersuchungen an Phänologischen Phases im Naturraum 06 (unterbayerisches Hügelland). Meteorol Rundsch 17:113–122

    Google Scholar 

  • Piao SL, Ciais P, Friedlingstein P, Peylin P, Reichstein M, Luyssaert S, Margolis H, Fang JY, Barr A, Chen AP, Grelle A, Hollinger DY, Laurila T, Lindroth A, Richardson AD, Vesala T (2008) Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature 451:49–52

    Article  CAS  Google Scholar 

  • Reaumur RAF (1735) Observations du thermomètre, faites à Paris pendant l’année 1735, comparées avec celles qui ont été faites sous la ligne, à l’isle de France, à Alger et quelques unes de nos isles de l'Amérique. Mem Paris Acad Sci 1735:545

    Google Scholar 

  • Richardson AD, Keenana TF, Migliavaccab M, Ryu Y, Sonnentaga O, Toomeya M (2013) Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric For Meteorol 169:156–173

    Article  Google Scholar 

  • Schwartz MD, Crawford TM (2001) Detecting energy balance modifications at the onset of spring. Phys Geogr 22:394–409

    Google Scholar 

  • Sparks TH, Carey PD (1995) The responses of species to climate over two centuries: an analysis of the Marsham phenological record, 1736-1947. J Ecol 83:321–329

    Article  Google Scholar 

  • Sparks TH, Jeffree EP, Jeffree CE (2000) An examination of the relationship between flowering times and temperature at the national scale using long-term phenological records from the UK. Int J Biometeorol 44:82–87

    Article  CAS  Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. B Am Meteorol Soc 79:61–78

    Article  Google Scholar 

  • Wan M, Liu X (1979) Method of Chinese phenological observation (in Chinese). Science Press, Beijing

    Google Scholar 

  • Yang G, Chen X (1995) Phenological calendars and their applications in the Beijing area (in Chinese). Capital Normal University Press, Beijing

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Meteorological Information Center of the China Meteorological Administration for providing phenological data. This research is funded by the National Natural Science Foundation of China under Grant No. 41471033.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqiu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, W., Ren, S. et al. Temporal coherence of phenological and climatic rhythmicity in Beijing. Int J Biometeorol 61, 1733–1748 (2017). https://doi.org/10.1007/s00484-017-1355-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1355-8

Keywords

Navigation