Skip to main content

Light use efficiency of a warm-temperate mixed plantation in north China

Abstract

Light use efficiency (LUE) is one of the important parameters on calculating terrestrial gross primary productivity (GPP) and net primary productivity (NPP). Based on 5-year (2006–2010) carbon flux and climatic variable data of a mixed plantation in north China, the seasonal and interannual variation of LUE was investigated and the biophysical controls were examined. Our results show that LUE had a distinct seasonal course, and peaked in the vigorous growing season with a value of 0.92–1.27 g C MJ−1. During the period of 2006–2010, annual mean LUE ranged between 0.54 and 0.62 g C MJ−1, and it was linearly correlated with annual GPP. In the growing season, LUE was significantly linked with the water availability variables (including monthly mean vapor pressure deficit (VPD), precipitation, evaporative fraction (EF), and the ratio of precipitation to evapotranspiration (P/ET)) and canopy conductance (g c). However, EF was a better estimator of LUE compared with other biophysical variables. LUE decreased with an increase of the clearness index (CI), indicating that LUE was higher under cloudy sky conditions than that under sunny sky conditions in the mixed plantation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ahl DE, Gower ST, Mackay DS, Burrows SN, Norman JM, Diak GR (2004) Heterogeneity of light use efficiency in a northern Wisconsin forest: implications for modeling net primary production with remote sensing. Remote Sens Environ 93:168–178

    Article  Google Scholar 

  • Allard V, Ourcival JM, Rambal S, Joffre R, Rocheteau (2008) Seasonal and annual variation of carbon exchange in an evergreen Mediterranean forest in southern France. Glob Chang Biol 14:714–725

    Article  Google Scholar 

  • Alton PB (2008) Reduced carbon sequestration in terrestrial ecosystems under overcast skies compared to clear skies. Agric For Meteorol 148:1641–1653

    Article  Google Scholar 

  • Alton PB, North P (2005) Radiative transfer modeling of direct and diffuse sunlight in a Siberian pine forest. J Geophys Res 110:D23209. doi:10.1029/2005JD006060

    Article  Google Scholar 

  • Alton PB, North PR, Los SO (2007) The impact of diffuse sunlight on canopy light-use efficiency, gross photosynthetic product and net ecosystem exchange in three forest biomes. Glob Chang Biol 13:776–787

    Article  Google Scholar 

  • Austin RB, Kingston G, Longden PC, Donovan PA (1978) Gross energy yields and the support energy requirements for the production of sugar from beet and cane: a study of four production areas. J Agric Sci 91:661–675

    Article  Google Scholar 

  • Baldocchi DD (1997) Measuring and modelling carbon dioxide and water vapour exchange over a temperature broad-leaved forest during the 1995 summer drought. Plant Cell Environ 20:1108–1122

    Article  Google Scholar 

  • Bunce JA (2003) Effects of water vapor pressure difference on leaf gas exchange in potato and sorghum at ambient and elevated carbon dioxide under field conditions. Field Crop Res 82:37–47

    Article  Google Scholar 

  • Chasmer L, Mccaughey H, Barr A, Black A, Shashkov A, Treitz P, Zha T (2008) Investigating light-use efficiency across a jack pine chronosequence during dry and wet years. Tree Physiol 28:1395–1406

    CAS  Article  Google Scholar 

  • Cheng SJ, Bohrer G, Steiner AL, Hollinger DY, Suyker A, Phillips RP, Nadelhoffer KJ (2015) Variations in the influence of diffuse light on gross primary productivity in temperate ecosystems. Agric For Meteorol 201:98–110

    Article  Google Scholar 

  • Choudhury BJ (2001) Estimating gross photosynthesis using satellite and ancillary data: approach and preliminary results. Remote Sens Environ 75:1–21

    Article  Google Scholar 

  • Colinvaux PA (1993) Ecology 2. Wiley, New York, 688 p

    Google Scholar 

  • Falge E, Baldocchi D, Tenhunen J, Aubinet M, Bakwin P, Berbigier P, Bernhofer C, Burba G, Clement R, Davis KJ, Elbers JA, Goldstein AH, Grelle A, Granier A, Gudmundsson J, Hollinger D, Kowalski AS, Katul G, Law BE, Malhi Y, Meyers T, Monson RK, Munger JW, Oechel W, Kyaw TPU, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Valentini R, Wilson K, Wofsy S (2002) Seasonality of ecosystem respiration and gross primary production as derived from FLUXNET measurements. Agric For Meteorol 113:53–74

    Article  Google Scholar 

  • Fang JY, Liu GH, Zhu B, Wang XK, Liu SH (2007) Carbon budgets of three temperate forest ecosystems in Dongling Mt., Beijing, China. Sci China Ser D 50:92–101

    Article  Google Scholar 

  • Flanagan LB, Sharp EJ, Gamon JA (2015) Application of the photosynthetic light-use efficiency model in a northern Great Plains grassland. Remote Sens Environ 168:239–251

    Article  Google Scholar 

  • Garbulsky MF, Peñuelas J, Papale D, Ardö J, Goulden ML, Kiely G, Richardson AD, Rotenberg E, Veenendaal EM, Filella I (2010) Patterns and controls of the variability of radiation use efficiency and primary productivity across terrestrial ecosystems. Glob Ecol Biogeogr 19:253–267

    Article  Google Scholar 

  • Gilmanov TG, Verma SB, Sims PL, Meyers TP, Bradford JA, Burba GG, Suyker AE (2003) Gross primary production and light response parameters of four Southern Plains ecosystems estimated using long-tem CO2-flux tower measurements. Global Biogeochem Cy 17(2):1071. doi:10.1029/2002GB002023

    Article  Google Scholar 

  • Gilmanov TG, Soussana JF, Aires L, Allard V, Ammann C, Balzarolo M, Barcza Z, Bernhofer C, Campbell CL, Cernusca A, Cescatti A, Clifton-Brown J, Dirks BOM, Dore S, Eugster W, Fuhrer J, Gimeno C, Gruenwald T, Haszpra L, Hensen A, Ibrom A, Jacobs AFG, Jones MB, Lanigan G, Laurila T, Lohila A, Manca G, Marcolla B, Nagy Z, Pilegaard K, Pinter K, Pio C, Raschi A, Rogiers N, Sanz MJ, Stefani P, Sutton M, Tuba Z, Valentini R, Williams ML, Wohlfahrt G (2007) Partitioning European grassland net ecosystem CO2 exchange into gross primary productivity and ecosystem respiration using light response function analysis. Agric Ecosyst Environ 121:93–120

    CAS  Article  Google Scholar 

  • Gilmanov TG, Aires L, Barcza Z, Baron VS, Belelli L, Beringer J, Billesbach D, Bonal D, Bradford J, Ceschia E, Cook D, Corradi C, Frank A, Gianelle D, Gimeno C, Gruenwald T, Guo HQ, Hanan N, Haszpra L, Heilman J, Jacobs A, Jones MB, Johnson DA, Kiely G, Li SG, Magliulo V, Moors E, Nagy Z, Nasyrov M, Owensby C, Pinter K, Pio C, Reichstein M, Sanz MJ, Scott R, Soussana JF, Stoy PC, Svejcar T, Tuba Z, Zhou GS (2010) Productivity, respiration, and light-response parameters of world grassland and agroecosystems derived from flux-tower measurements. Rangeland Ecol Manage 63:16–39

    Article  Google Scholar 

  • Greco S, Baldocchi DD (1996) Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Glob Chang Biol 2:183–198

    Article  Google Scholar 

  • Gu LH, Fuentes JD, Shugart HH (1999) Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness: results from two North American deciduous forests. J Geophys Res 104:31421–31434

    CAS  Article  Google Scholar 

  • Gu LH, Baldocchi D, Verma SB, Black TA, Vesala T, Falge E, Dowty PR (2002) Advantages of diffuse radiation for terrestrial ecosystem productivity. J Geophys Res 107. doi:10.1029/2001JD001242

  • Hilker T, Coops NC, Schwalm CR, Jassal RS, Black TA, Krishnan P (2008) Effects of mutual shading of tree crowns on prediction of photosynthetic light-use efficiency in a coastal Douglas-fir forest. Tree Physiol 28:825–834

    Article  Google Scholar 

  • Hollinger DY, Kelliher FM, Byers JN, Hunt JE, McSeveny TM, Weir PL (1994) Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere. Ecology 75:134–150

    Article  Google Scholar 

  • Horn JE, Schulz K (2011) Identification of a general light use efficiency model for gross primary production. Biogeosciences 8:999–1021

    Article  Google Scholar 

  • Humphreys ER, Black TA, Ethier GJ, Drewitt GB, Spittlehouse DL, Jork EM, Nesic Z, Livingstone NJ (2003) Annual and seasonal variability of sensible and latent heat fluxes above a coastal Douglas-fir forest, British Columbia, Canada. Agric For Meteorol 115:109–125

    Article  Google Scholar 

  • Jarvis PG, James GB, Landsberg JJ (1976) Coniferous forest. In: Monteith JL (ed) Vegetation and the atmosphere. Academic Press, London, pp 171–240

    Google Scholar 

  • Jia ZB (2009) Reports of forestry resources in China. Chinese Forestry Press, Beijing

    Google Scholar 

  • Jones HG (1992) Plants and microclimate: a quantitative approach to environmental plant physiology. Cambridge University Press, New York, 428 pp

    Google Scholar 

  • Kanniah KD, Beringer J, Hutley LB (2010) The comparative role of key environmental factors in determining savanna productivity and carbon fluxes: a review, with special reference to northern Australia. Prog Phys Geogr 34(4):459–490

    Article  Google Scholar 

  • Kemanian AR, Stöckle CO, Huggins DR (2004) Variability of barley radiation-use efficiency. Crop Sci 44:1662–1672

    Article  Google Scholar 

  • Kiniry JR, Landivar JA, Witt M, Gerik TJ, Cavero TJ, Wade LJ (1998) Radiation-use efficiency response to vapor pressure deficit for maize for maize and sorghum. Field Crop Res 56:265–270

    Article  Google Scholar 

  • Knohl A, Baldocchi DD (2008) Effects of diffuse radiation on canopy gas exchange processes in a forest ecosystem. J Geophys Res 113:G02023. doi:10.1029/2007JG000663

    Article  Google Scholar 

  • Kumar PV, Srivastava NN, Victor US, Rao DG, Rao AVMS, Ramakrishna YS, Rao BVR (1996) Radiation and water use efficiencies of rainfed castor beans (Ricinus communis L.) in relation to different weather parameters. Agric For Meteorol 81:241–253

    Article  Google Scholar 

  • Lagergren F, Eklundh L, Grelle A, Lundblad M, Mölder M, Lankreijer H, Lindroth A (2005) Net primary production and light use efficiency in a mixed coniferous forest in Sweden. Plant Cell Environ 28:412–423

  • Larcher W (1995) Physiological plant ecology. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Mercado LM, Bellouin N, Sitch S, Boucher O, Huntingford C, Wild M, Cox PM (2009) Impact of changes in diffuse radiation on the global land carbon sink. Nature 458:1014–1017

    CAS  Article  Google Scholar 

  • Monteith JL (1995) A reinterpretation of stomatal responses to humidity. Plant Cell Environ 18:357–364

    Article  Google Scholar 

  • Monteith JL, Unsworth MH (1990) Principles of environmental physics, 2nd edn. Chapman and Hall, New York

    Google Scholar 

  • O’Connell MG, O’Leary GJ, Whitfield DM, Connor DJ (2004) Interception of photosynthetically active radiation and radiation-use efficiency of wheat, field pea and mustard in a semi-arid environment. Field Crop Res 85:111–124

    Article  Google Scholar 

  • Ogutu BO, Dash J, Dawson TP (2013) Developing a diagnostic model for estimating terrestrial vegetation gross primary productivity using the photosynthetic quantum yield and Earth Observation data. Glob Chang Biol 19:2878–2892

    Article  Google Scholar 

  • Oliveira PHF, Artaxo P, Pires C, De Lucca S, Procópio A, Holben B, Schafer J, Cardoso LF, Wofsy SC, Rocha HR (2007) The effects of biomass burning aerosols and clouds on the CO2 flux in Amazonia. Tellus 59B:338–349

  • Pejam MR, Arain MA, McCaughey JH (2006) Energy and water vapour exchanges over a mixedwood boreal forest in Ontario, Canada. Hydrol Process 20:3709–3724

    Article  Google Scholar 

  • Schwalm CR, Black TA, Arniro BD, Arain MA, Barr AG, Bourque CPA, Dunn AL, Flanagan LB, Giasson MA, Lafleur PM, Margolis HA, McCaughey JH, Orchansky AL, Wofsy SC (2006) Photosynthetic light use efficiency of three biomes across an east-west continental-scale transect in Canada. Agric For Meteorol 140:269–286

    Article  Google Scholar 

  • Squire GR, Marshall B, Terry AC, Monteith JL (1984) Response to temperature in a stand to pearl millet. J Exp Bot 35:599–610

    Article  Google Scholar 

  • Thom AS (1972) Momentum, mass and heat exchange of vegetation. Q J R Meteorol Soc 98:414–428

    Article  Google Scholar 

  • Tong XJ, Meng P, Zhang JS, Li J, Zheng N, Huang H (2012) Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmos Environ 49:257–267

    CAS  Article  Google Scholar 

  • Turner DP, Urbanski S, Bremer D, Wofsy SC, Meyers T, Gower ST, Gregory M (2003) A cross-biome comparison of daily light use efficiency for gross primary production. Glob Chang Biol 9:383–395

    Article  Google Scholar 

  • Urban O, Janouš D, Acosta M, Czerný R, Marková I, Navrátil M, Pavelka M, Pokorny R, Šprtová M, Zhang R, Špunda V, Grace J, Marek MV (2007) Ecophysiological controls over the net ecosystem exchange of mountain spruce stand. Comparison of the response in direct vs. diffuse solar radiation. Glob Chang Biol 13:157–168

    Article  Google Scholar 

  • Urban O, Klem K, Ač A, Havránková K, Holišová P, Navrátil M, Zitová M, Kozlová K, Pokorný R, Šprtová M, Tomášková I, Špunda V, Grace J (2012) Impact of clear and cloudy sky conditions distribution of photosynthetic CO2 spruce canopy. Funct Ecol 26:46–55

    Article  Google Scholar 

  • Wang Y, Zhou G (2012) Light use efficiency over two temperate steppes in Inner Mongolia, China. PLoS One 7(8):e43614. doi:10.1371/journal.pone.0043614

    CAS  Article  Google Scholar 

  • Wang XC, Wang CK, Yu GR (2008) Spatio-temporal patterns of forest carbon dioxide exchange based on global eddy covariance measurements. Sci China Ser D 51:1129–1143

    CAS  Article  Google Scholar 

  • Wang SQ, Huang K, Yan H, Yan HM, Zhou L, Wang HM, Zhang JH, Yan JH, Zhao L, Wang YF, Shi PL, Zhao FH, Sun LG (2015) Improving the light use efficiency model for simulating terrestrial vegetation gross primary production by the inclusion of diffuse radiation across ecosystems in China. Ecol Complex 23:1–13

    Article  Google Scholar 

  • Wharton S, Schroeder M, Bible K, Falk M, Paw UKT (2009) Stand-level gas-exchange responses to seasonal drought in very young versus old Douglas-fir forests of the Pacific Northwest, USA. Tree Physiol 29:959–974

    CAS  Article  Google Scholar 

  • Wilkinson M, Eaton EL, Broadmeadow MSJ, Morison JIL (2012) Inter-annual variation of carbon uptake by a plantation oak woodland in south-eastern England. Biogeosciences 9:5373–5389

    CAS  Article  Google Scholar 

  • Yuan WP, Liu SG, Zhou GS, Zhou GY, Tieszen LL, Baldocchi D, Bernhofer C, Gholz H, Goldstein AH, Goulden ML, Hollinger DY, Hu YM, Law BE, Stoy PC, Vesala T, Wofsy SC (2007) Deriving a light use efficiency model from eddy covariance flux data for predicting daily gross primary production across biomes. Agric For Meteorol 143:189–207

    Article  Google Scholar 

  • Zha TS, Li CY, Kellomäki S, Peltola H, Wang K-Y, Zhang YQ (2013) Controls of evapotranspiration and CO2 fluxes from Scots pine by surface conductance and abiotic factors. PLoS One 8(7):e69027. doi:10.1371/journal.pone.0069027

    CAS  Article  Google Scholar 

  • Zhang M, Yu GR, Zhang LM, Sun XM, Wen XF, Han SJ, Yan JH (2010) Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China. Biogeosciences 7:711–722

    CAS  Article  Google Scholar 

  • Zhang M, Yu GR, Zhuang J, Gentry R, Fu YL, Sun XM, Zhang LM, Wen XF, Wang QF, Han SJ, Yan JH, Zhang YP, Wang YF, Li YN (2011) Effects of cloudiness change on net ecosystem exchange, light use efficiency and water use efficiency in typical ecosystems of China. Agric For Meteorol 151:803–816

    Article  Google Scholar 

  • Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    CAS  Article  Google Scholar 

  • Zhu XJ, Yu GR, Wang QF, Gao YN, He HL, Zheng H, Chen Z, Shi PL, Zhao L, Li YN, Wang YF, Zhang YP, Yan JH, Wang HM, Zhao FH, Zhang JH (2016) Approaches of climate factors affecting the spatial variation of annual gross primary productivity among terrestrial ecosystems in China. Ecol Indic 62:174–181

    Article  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Natural Science Foundation of China (31570617, 31100322) and the Fundamental Research Funds for the Central Universities (No. YX2011-19).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojuan Tong.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tong, X., Zhang, J., Meng, P. et al. Light use efficiency of a warm-temperate mixed plantation in north China. Int J Biometeorol 61, 1607–1615 (2017). https://doi.org/10.1007/s00484-017-1339-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-017-1339-8

Keywords

  • Gross primary productivity
  • Light use efficiency
  • Clearness index
  • Mixed plantation