Phenological patterns of flowering across biogeographical regions of Europe

Abstract

Long-term changes of plant phenological phases determined by complex interactions of environmental factors are in the focus of recent climate impact research. There is a lack of studies on the comparison of biogeographical regions in Europe in terms of plant responses to climate. We examined the flowering phenology of plant species to identify the spatio-temporal patterns in their responses to environmental variables over the period 1970–2010. Data were collected from 12 countries along a 3000-km-long, North–South transect from northern to eastern Central Europe.

Biogeographical regions of Europe were covered from Finland to Macedonia. Robust statistical methods were used to determine the most influential factors driving the changes of the beginning of flowering dates. Significant species-specific advancements in plant flowering onsets within the Continental (3 to 8.3 days), Alpine (2 to 3.8 days) and by highest magnitude in the Boreal biogeographical regions (2.2 to 9.6 days per decades) were found, while less pronounced responses were detected in the Pannonian and Mediterranean regions. While most of the other studies only use mean temperature in the models, we show that also the distribution of minimum and maximum temperatures are reasonable to consider as explanatory variable. Not just local (e.g. temperature) but large scale (e.g. North Atlantic Oscillation) climate factors, as well as altitude and latitude play significant role in the timing of flowering across biogeographical regions of Europe. Our analysis gave evidences that species show a delay in the timing of flowering with an increase in latitude (between the geographical coordinates of 40.9 and 67.9), and an advance with changing climate. The woody species (black locust and small-leaved lime) showed stronger advancements in their timing of flowering than the herbaceous species (dandelion, lily of the valley). In later decades (1991–2010), more pronounced phenological change was detected than during the earlier years (1970–1990), which indicates the increased influence of human induced higher spring temperatures in the late twentieth century.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-1 http://www.eea.europa.eu/data-and-maps/data/biogeographical-regions-europe-1

  2. 2.

    http://www.ecad.eu/download/ensembles/ensembles.php

References

  1. Aguilera F, Fornaciari M, Ruiz-Valenzuela L, Galàn C, Msallem M, Dhiab A B, Dìaz-de la Guardia C, del Mar Trigo M, Bonofiglio T, Orlandi F (2015) Phenological models to predict the main flowering phases of olive (Olea europaea L.) along a latitudinal and longitudinal gradient across the Mediterranean region. Int J Biometeorol 95:629–641

    Article  Google Scholar 

  2. Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26

    Article  Google Scholar 

  3. Askeyev O V, Sparks T H, Askeyev I V, Tishin D V, Tryjanowski P (2010) East versus West: contrasts in phenological patterns? Glob Ecol Biogeogr 19:783–793

    Article  Google Scholar 

  4. Auer I, Böhm R, Jurkovic A, Lipa W, Orlik A, Potzmann R, Schöner W, Ungersböck M, Matulla C, Briffa K, Jones P, Efthymiadis D, Brunetti M, Nanni T, Maugeri M, Mercalli L, Mestre O, Moisselin J M, Begert M, Müller-Westermeier G, Kveton V, Bochnicek O, Stastny P, Lapin M, Szalai S, Szentimrey T, Cegnar T, Dolinar M, Gajic-Capka M, Zaninovic K, Majstorovic Z, Nieplova E (2007) Histalp—historical instrumental climatological surface time series of the Greater Alpine Region. Int J Climatol 27:17–46

    Article  Google Scholar 

  5. Chambers L E, Altwegg R, Barbraud C, Barnard P, Beaumont L J, Crawford R J M, Durant J M, Hughes L, Keatley M R, Low M, Morellato P C, Poloczanska E S, Ruoppolo V, Vanstreels R E T, Woehler E J, Wolfaardt A C (2013) Phenological changes in the southern hemisphere. PLoS ONE e75514:8

    Google Scholar 

  6. Chmielewski F M, Rotzer T (2001) Response of tree phenology to climate change across Europe. Agric For Meteorol 108:101–112

    Article  Google Scholar 

  7. Cleland E, Chuine I, Menzel A, Mooney H A, Schwartz M D (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  Google Scholar 

  8. Cleveland W (1979) Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc 74:829–836

    Article  Google Scholar 

  9. Crepinsek Z, Zrnec C, Susnik A, Zust A (2008) Slovenian phenological observations. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  10. Demarèe G R, Rutishauser T (2009) Origins of the word “Phenology”. EOS Trans Am Geophys Union 90:291–291

    Article  Google Scholar 

  11. Estrella N, Sparks T, Menzel A (2009) Effects of temperature, phase type and timing, location, and human density on plant phenological responses in Europe. Clim Res 39:235–248

    Article  Google Scholar 

  12. ETCBD (2006) The indicative map of European biogeographical regions: methodology and development. Technical report European Topic Centre on Biological Diversity. National Museum of Natural History, France

    Google Scholar 

  13. Franks S J (2015) The unique and multifaceted importance of the timing of flowering. Am J Bot 102:1401–1402

    CAS  Article  Google Scholar 

  14. Ge Q, Wang H, Rutishauser T, Dai J (2015) Phenological response to climate change in China: a meta-analysis. Glob Chang Biol 21:265–274

    Article  Google Scholar 

  15. Gobiet A, Kotlarski K, Beniston M, Heinrich G, Rajczak J, Stoffel M (2014) 21st century climate change in the European Alps—a review. Sci Total Environ 493:1138–1151

    CAS  Article  Google Scholar 

  16. Grisule G, Briede E (2008) The history and current status of phenological recording in Latvia. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725 – the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  17. Haylock M R, Hofstra N, Klein Tank A M G, Klok E J, Jones P D, New M (2008) A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J Geophys Res - Atmos 113, 10.1029/2008JD010201

  18. Hodzic S, Voljevica A (2008) Phenology in Bosnia and Hercegovina. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  19. Hurrel J W (1995) Decadal trends in the North Atlantic Oscillation regional temperatures and precipitation. Science 269:676–679

    Article  Google Scholar 

  20. IPCC (2007) Technical summary. Cambridge University Press , Cambridge

    Google Scholar 

  21. Jatczak K, Walawender J (2009) Average rate of phenological changes in Poland according to climatic changes. Adv Sci Res 3 :127–131

    Article  Google Scholar 

  22. Kalvane G, Romanovskaja D, Briede A, Baksiene E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Clim Res 39:209–210

    Article  Google Scholar 

  23. Karyieva J, van Leeuven W, Woodhouse C (2012) Impacts of climate gradients on the vegetation phenology of major land use types in Central Asia (1981–2008). Front Earth Sci 6:206–225

  24. Koch E, Dittmann E, Lippa W, Menzel A, Nekovar J, Sparks T, van Vliet AJH (2009) COST725—Establishing a European phenological data platform for climatological applications: major results. Adv Sci Res 3:119–122

  25. Körner C, Basler D (2010) Phenology under global warming. Science 327:1461–1462

  26. Kubin E, Kotilainen E, Poikolainen J, Hokkanen T, Nevalainen S, Pouttu A, Karhu J, Pasanen J (2007) Monitoring instructions of the finnish national phenological network. Technical report Finnish Forest Research Institute, Muhos Research Unit , Metla

    Google Scholar 

  27. Lappalainen H, Linkosalo T, Venalainen A (2008) Long-term trends in spring phenology in a boreal forest in central Finland. Boreal Environ Res 13:303–318

    Google Scholar 

  28. Mann H B (1945) Nonparametric tests against trend. Econometrica 13:245–259

    Article  Google Scholar 

  29. Maronna R, Martin R, Yohai V (2006) Robust statistics: theory and methods. Wiley, New York. ISBN:978-0-470-01092-1

    Google Scholar 

  30. Martìnkovà J, Smilauer P, Mihulka S (2002) Phenological pattern of grassland species: relation to the ecological and morphological traits. Flora 197:290–302

    Article  Google Scholar 

  31. Meier U (2001) BBCH-Monograph: growth stages of mono- and dicotyledonous plants. Technical Report, 2 Edn. Federal Biological Research Centre for Agriculture and Forestry

  32. Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    CAS  Article  Google Scholar 

  33. Menzel A, Seifert H, Estrella N (2005) SSW to NNE—North Atlantic Oscillation affects the progress of seasons across Europe. Glob Chang Biol 11:909–918

    Article  Google Scholar 

  34. Menzel A, Seifert H, Estrella N (2011) Effects of recent warm and cold spells on European plant phenology. Int J Biometeorol 55:921–932

    Article  Google Scholar 

  35. Menzel A, Sparks T H, Estrella N, Koch E, Aasa A, Ahas R, Alm-Kuebler K, Bissollii P, Braslavska O, Briede A, Chmielewski FM, Crepinsek Z, Curnel Y, Dahl A, Defila C, Donelly A, Filella Y, Jatczak K, Mage F, Mestre A, Nordli A, Penuelas J, Pirinen P, Remisova V, Scheifinger H, Striz M, Susnik A, Van Vliet AJH, Wielgolaski FE, Zach S, Zust A (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1969–1976

  36. Mikkonen S, Laine M, Mäkelä H, Gregow H, Tuomenvirta H, Lahtinen M, Laaksonen A (2015) Trends in the average temperature in Finland, 1847–2013. Stoch Env Res Risk A 29:1521– 1529

  37. Nekovàr J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (2008) COST ACtion 725—The history and current status of plant phenology in Europe Technical report. COST Office , Brussels

    Google Scholar 

  38. Niedz̀wiedz̀ T, Jatczak K (2008) History of phenology in Poland. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  39. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annual review of ecology. Evol Syst 37:637– 669

    Article  Google Scholar 

  40. Penuelas J, Filella I, Zhang X, Llorens L, Ogaya R, Lloret F, Comas P, Estiarte M, Terradas J (2004) Complex spatiotemporal phenological shifts as a response to rainfall changes. New Phytol 161 :837–846

  41. Pilar C, Gabriel M (1998) Phenological pattern of fifteen Mediterranean phanaerophytes from Quercus ilex communities of NE-Spain. Plant Ecol 139:103–112

    Article  Google Scholar 

  42. Popovic T, Drljevic M (2008) History and current status of phenology in Montenegro. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  43. Pudas E, Leppala M, Tolvanen A, Poikolainen J, Venalainen A, Kubin E (2008) Trends in phenology of Betula pubescens across the boreal zone in Finland. Int J Biometeorol 52:251–259

    Article  Google Scholar 

  44. R Development Core Team (2016) R: a language and environment for statistical computing r foundation for statistical computing. Vienna, Austria. http://www.R-project.org

    Google Scholar 

  45. Remisovà T, Nejedlik P (2008) History and present observations in Slovak plant phenology. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  46. Rodriguez-Galiano V, Dash J, Atkinson P (2015) Characterising the land surface phenology of Europe using decadal MERIS data. Remote Sens 7:9390–9409

    Article  Google Scholar 

  47. Roekaerts M (2002) The biogeographical regions map of Europe: basic principles of its creation and overview of its development Technical report. European Topic Centre Nature Protection and Biodiversity, European Environment Agency

    Google Scholar 

  48. Romanovskaja D, Baksiene E Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) (2008) Phenological investigations in Lithuania. COST Office, Brussels

  49. Root T L, Price J T, Hall K R, Schneider S H, Rosenzweig C, Pounds J A (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    CAS  Article  Google Scholar 

  50. Rousseeuw P, Croux C, Todorov V, Ruckstuhl A, Salibian-Barrera M, Verbeke T, Koller M, Maechler M (2015) Robustbase: basic Robust Statistics. R Foundation for Statistical Computing, package version 0.92-3

  51. Rutishauser T, Schleip C, Sparks T H, Nordli O, Menzel A, Wanner H, Jeanneret F, Luterbacher J (2009) Temperature sensitivity of Swiss and British plant phenology from 1753 to 1958. Clim Res 39 :179–190

    Article  Google Scholar 

  52. Scheifinger H, Menzel A, Koch E, Peter C, Ahas R (2002) Atmospheric mechanisms governing the spatial and temporal variability of phenological phases in Central Europe. Int J Climatol 22:1739–1755

    Article  Google Scholar 

  53. Schleip C, Sparks T H, Estrella N, Menzel A (2009) Spatial variation in onset dates and trends in phenology across Europe. Clim Res 39:249–260

    Article  Google Scholar 

  54. Schwartz M D, Ahas R, Aasa A (2006) Onset of spring starting earlier across the Northern Hemisphere. Glob Chang Biol 12:343–351

    Article  Google Scholar 

  55. Stocker T, Qin D, Plattner G K, Tignor M, Allen S K, Boschung J, Nauels A, Xia Y, Bex V, Midgley P M (2013) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

    Google Scholar 

  56. Szabò B, Vincze E, Czùcz B (2016) Flowering phenological changes in relation to climate change in Hungary. Int J Biometeorol 60:1347–1356

    Article  Google Scholar 

  57. Szalai S, Bella S, Nèmeth A, Dunay S (2008) History of Hungarian phenological observations. In: Nekovar J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  58. Templ B, Fleck s, Templ M (2016) Change of plant phenophases explained by survival modelling. Int J Biometeorol, doi:10.1007/s00484-016-1267-z 10.1007/s00484-016-1267-z

  59. Todorov V, Filzmoser P (2009) Multivariate robust statistics: methods and computation. Südwestdeutscher Verlag für Hochschulschriften, Saarbrücken

    Google Scholar 

  60. Vucetic V, Vucetic M, Loncar Z (2008) History and present observations in Croatian plant phenology. In: Nekovàr J, Koch E, Kubin E, Nejedlik P, Sparks T, Wielgolaski F E (eds) COST Action 725—the history and current status of plant phenology in Europe. COST Office, Brussels

    Google Scholar 

  61. Walther G R, Post E, Convey P, Menzel A, Parmesan C, Beebee T J C, Fromentin J M, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395

    CAS  Article  Google Scholar 

  62. White M A, Hoffman F, Hargrove W W, Nemani R R (2005) A global framework for monitoring phenological responses to climate change. Geophys Res Lett 32:L04705

    Google Scholar 

  63. Wielgolaski F (2001) Phenological modifications in plants by various edaphic factors. Int J Biometeorol 45:196–202

    CAS  Article  Google Scholar 

  64. Wolkovich E, Cook B, Allen J M, Crimmins T M, Betancourt J L, Travers S E, Pau S, Regetz J, Davies T J, Kraft N J B, Ault T R, Bolmgren K, Mazer S J, McCabe G J, McGill B J, Parmesan C, Salamin N, Schwartz M D, Cleland E E (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–497

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). We are very grateful to all institutes and scientists who provided data for the North–South phenological database. We would especially like to emphasize our gratefulness to those data contributors who did not participate as authors in the writing of this manuscript: K. Jatczak (Centre for Polands̀ Climate Monitoring), P. Nejedlik (Slovak Hydrometeorological Institute), T. Niedz̀wiedz̀ (University of Silesia), T. Popovic (Hydrometeorological Institute of Montenegro), H. Simola (Finnish Meteorological Institute), Z. Snopkovà (Slovak Hydrometeorological Institute) and S. Stevkova (Hydrometeorological Institute of Macedonia). Additionally, we would like to pay respect to J. Terhivuo (Finnish Museum of Natural History) who unfortunately could not see these results published. And finally, thanks to F. Szentkirályi for inspiritaion during the project planning.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Barbara Templ.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Templ, B., Templ, M., Filzmoser, P. et al. Phenological patterns of flowering across biogeographical regions of Europe. Int J Biometeorol 61, 1347–1358 (2017). https://doi.org/10.1007/s00484-017-1312-6

Download citation

Keywords

  • Beginning of flowering
  • Biogeographical regions
  • Climate change
  • Europe
  • Robust regression
  • Shifting trend