Skip to main content
Log in

Predicting the Poaceae pollen season: six month-ahead forecasting and identification of relevant features

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

In this paper, we approach the problem of predicting the concentrations of Poaceae pollen which define the main pollination season in the city of Madrid. A classification-based approach, based on a computational intelligence model (random forests), is applied to forecast the dates in which risk concentration levels are to be observed. Unlike previous works, the proposal extends the range of forecasting horizons up to 6 months ahead. Furthermore, the proposed model allows to determine the most influential factors for each horizon, making no assumptions about the significance of the weather features. The performace of the proposed model proves it as a successful tool for allergy patients in preventing and minimizing the exposure to risky pollen concentrations and for researchers to gain a deeper insight on the factors driving the pollination season.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aguilera F, Fornaciari M, Ruíz-Valenzuela L, Galán C, Msallem M, Dhiab A, la Guardia CD, del Mar Trigo M, nd F Orlandi TB (2014) Phenological models to predict the main flowering phases of olive (Olea europaea l.) along a latitudinal and longitudinal gradient across the Mediterranean region. Int J Bioeteorology 59:629–641

    Article  Google Scholar 

  • Andersen TB (1991) A model to predict the beginning of the pollen season. Grana 30:269–275

    Article  Google Scholar 

  • Aznarte JL, Benítez Sánchez J M, Lugilde DN, de Linares Fernández C, de la Guardia CD, Sánchez F A (2007) Forecasting airborne pollen concentration time series with neural and neuro-fuzzy models. Expert Syst Appl 32(4):1218–1225

    Article  Google Scholar 

  • Breiman L (2001) Random forest. Mach Learn 45:5–32

    Article  Google Scholar 

  • Breiman L (2002) Manual on seeting up, using and understanding random forest. Stat Dept University of California Berkley v3.1

  • Brighetti MA, Costa C, Menesatti P, Antonucci F, Tripodi S, Travaglini A (2013) Multivariate statistical forecasting modeling to predict Poaceae pollen critical concentrations by meteoclimatic data. Aerobiologia 30:25–33

    Article  Google Scholar 

  • Cannell M, Smith R (1983) Thermal time, chill days and prediction of budburst in Picea sitchensis. J Appl Ecol 20:269–275

    Article  Google Scholar 

  • Castellano-Méndez M, Aira MJ, Iglesias I, Jato V, González-Manteiga W (2005) Artificial neural networks as a useful tool to predict the risk level of Betula pollen in the air. Int J Biometeorology 49:310–316

    Article  Google Scholar 

  • Fawcett M (2003) Roc graphs: Notes and practical considerations for data mining researchers. Tech rep, HP Laboratories

  • Feher Z, Jarai-Komlodi M (1997) An examination of the main characteristics of the pollen seasons in Budapest, Hungary (1991-1996). Grana 36:169–174

    Article  Google Scholar 

  • Galán C, Emberlin J, Domínguez E, Bryant RH, Villamandos F (1995) A comparative analysis of daily variations in the Gramineae pollen counts at Cordoba, Spain and London, UK. Grana 34:189–198

    Article  Google Scholar 

  • Green BJ, Dettman M, Yli-Panula E, Rutherford S, Simpson R (2004) Atmospheric Poaceae pollen frequencies and associations with meteorological parameters in Brisbane, Australia: a 5 year record, 1994–1999. Int J Biometeorology 40:172–178

    Article  Google Scholar 

  • Jato V, Rodríguez-Rajo F J, Alcázar P, Nuntiis PD, Galán C, Mandrioli P (2006) May the definition of pollen season influence aerobiological results? Aerobiologia 22:13–25

    Article  Google Scholar 

  • Myszkowska D (2014) Predicting tree pollen season start dates using thermal conditions. Aerobiologia 30:307–321

    Article  Google Scholar 

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Article  Google Scholar 

  • Nowosad J (2016) Spatiotemporal models for predicting high pollen concentration level of Corylus, Alnus and Betula. Int J Biometeorology 60:843–855

    Article  Google Scholar 

  • Palacios IS, Molina RT, Rodríguez A F M (2000) Influence of wind direction on pollen concentration in the atmosphere. Int J Biometeorology 44:128–133

    Article  Google Scholar 

  • Pauling A, Gehrig R, Clot B (2014) Toward optimized temperature sum parametrizations for forecasting the start of the pollen season. Aerobiologia 30:45–57

    Article  Google Scholar 

  • Peternel R, Srnec L, Culig J, Hrga I, Hercog P (2005) Poaceae pollen in the atmosphere of Zagreb (Croatia), 2002–2005. Grana 45:130–136

    Article  Google Scholar 

  • Rantio-Lehtimäki A, Koivikko A, Kupias R, Mäkinen Y, Pohjola A (1991) Significance of sampling height of airborne particles for aerobiological information. Allergy 46:68–76

    Article  Google Scholar 

  • Ribeiro H, Cunha M, Abreu I (2007) Definition of main pollen season using logistic model. Ann Agric Environ Med 14:259–264

    Google Scholar 

  • Rodríguez-Rajo F, Frenguelli G, Jato M (1983) Effect of air temperature on forecasting the start of the Betula pollen season at two contrasting sites in the south of Europe (1995-2001). Int J of Biometeorology 47:117–125

    Google Scholar 

  • Sánchez-Mesa J, Smith M, Emberlin J, Allitt U, Caulton E, Galán C (2003) Characteristics of grass pollen seasons in areas of southern Spain and the United Kingdom. Aerobiologia 19:243– 250

    Article  Google Scholar 

  • Smith M, Emberlin J (2006) A 30-day-ahead forecast model for grass pollen in north London, UK. Int J Biometeorology 50:233– 242

    Article  Google Scholar 

  • de Weger LA, Bergmann KC, Rantio-Lehtimaki A, Dahl A, Buters J, Déchamp C, Belmonte J, Thibaudon M, Cecchi L, Besancenot JP, Galán C, Waisel Y (2013) Impact of Pollen. In: Sofiev M, Bergmann KC (eds) Allergenic Pollen, Springer Netherlands, pp 161–215. doi:10.1007/978-94-007-4881-1_6

Download references

Acknowledgments

This work has been partially funded by Ministerio de Economía y Competitividad, Gobierno de España, through a Ramón y Cajal grant (RYC-2012-11984).

The authors would like to thank Patricia Cervigón (Comunidad de Madrid) and Montserrat Gutiérrez Bustillo (Universidad Complutense de Madrid) for his assistance in obtaining the data for this study.

The authors would also like to thank the anonymous reviewers for their useful, constructive, and valuable comments, which greatly improved the original version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Aznarte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Navares, R., Aznarte, J.L. Predicting the Poaceae pollen season: six month-ahead forecasting and identification of relevant features. Int J Biometeorol 61, 647–656 (2017). https://doi.org/10.1007/s00484-016-1242-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1242-8

Keywords

Navigation