Skip to main content

A comparison and appraisal of a comprehensive range of human thermal climate indices

Abstract

Numerous human thermal climate indices have been proposed. It is a manifestation of the perceived importance of the thermal environment within the scientific community and a desire to quantify it. Schemes used differ in approach according to the number of variables taken into account, the rationale employed, and the particular design for application. They also vary considerably in type and quality, method used to express output, as well as in several other aspects. In light of this, a three-stage project was undertaken to deliver a comprehensive documentation, classification, and overall evaluation of the full range of existing human thermal climate indices. The first stage of the project produced a comprehensive register of as many thermal indices as could be found, 165 in all. The second stage devised a sorting scheme of these human thermal climate indices that grouped them according to eight primary classification categories. This, the third stage of the project, evaluates the indices. Six evaluation criteria, namely validity, usability, transparency, sophistication, completeness, and scope, are used collectively as evaluation criteria to rate each index scheme. The evaluation criteria are used to assign a score that varies between 1 and 5, 5 being the highest. The indices with the highest in each of the eight primary classification categories are discussed. The work is the final stage of a study of the all human thermal climatic indices that could be found in literature. Others have considered the topic, but this study is the first detailed, genuinely comprehensive, and systematic comparison. The results make it simpler to locate and compare indices. It is now easier for users to reflect on the merits of all available thermal indices and decide which is most suitable for a particular application or investigation.

This is a preview of subscription content, access via your institution.

References

  1. Adamenko VN, Khairullin KS (1972) Evaluation of conditions under which unprotected parts of the human body may freeze in urban air during winter. Bound.-Layer Meteor 2:510–518

    Article  Google Scholar 

  2. Afanasieva R (1977) Hygienic theory of cold protection clothes projection. Legkaya Industriya, Moscow (in Russian)

    Google Scholar 

  3. Afanasieva R, Bobrov A, Sokolov S (2009) Cold assessment criteria and prediction of cooling risk in humans: the Russian perspective. Ind Health 47(3):235–241

    Article  Google Scholar 

  4. Aizenshtat BA (1964) Methods for assessment of some bioclimate indices. Meteorol Hydrol 12:9–16 (in Russian)

    Google Scholar 

  5. Aizenshtat LB, Aizenshtat BA (1974) Equation for equivalent-effective temperature. Questions of biometeorology. Leningrad, Hydrometeoizdat, pp. 81–83 (in Russian)

    Google Scholar 

  6. Akimovich NN, Balalla OA (1971) Sultry weathers at the south of Primorye and their influence on human body. Izvestia ASc USSR, Geography 4:94–100 (in Russian)

    Google Scholar 

  7. Arnoldy IA (1962) Acclimatization of the man in north and south. Medgiz, Moscow (in Russian)

    Google Scholar 

  8. Auliciems A, Kalma JD (1981) Human thermal climates of Australia. Australian Geographical Studies 19(1):3–24

    Article  Google Scholar 

  9. Auliciems A, Szokolay SV(2007) Thermal comfort. Brisbane, Qld. PLEA in association with Dept. of Architecture, University of Queensland, 1997

  10. Becker S (2000) Bioclimatological rating of cities and resorts in South Africa according to the Climate Index. Int J Climatol 20:1403–1414

    Article  Google Scholar 

  11. Bedford T (1936) Warmth factor in comfort at work, Med Res Council, Industrial Health Research Board, Report No.:76

  12. Bedford T (1961) Researches on thermal comfort. The society's lecture given at Bristol, 17 April. Ergonomics 4(4):289–310

    Article  Google Scholar 

  13. Bedford T (1964) Basic principles of ventilation and heating, 2nd edn. H. K. Lewis and Co., London

    Google Scholar 

  14. Bedford T, Warner CD (1934) The Globe Thermometer in Studies of Heating and Ventilation. J Hyg (Lond) 34(4):458–473

    CAS  Article  Google Scholar 

  15. Belding HS, Hatch TF (1955) Index for evaluating heat stress in terms of resulting physiological strain. Heat Pip Air Condit 27:129–136

    Google Scholar 

  16. Belkin VS (1992) Biomedical aspects of the development of mountain regions: case-study for the Gorno-Badakhshan autonomic region. Tajikistan. J. Mount. Res. and Dev. 12:63–70

    Article  Google Scholar 

  17. Beshir MY, Ramsey JD (1988) Heat stress indices: a review paper. Int J Indust Ergon 3:89–102

    Article  Google Scholar 

  18. Bidlot R, Ledent P (1947) Travail dans les milieux a haute temperature. Que savons-nous des limites de temperature humainement supportables? Hasselt: Institute d'Hygiene des Mines

  19. Blazejczyk K (2005) New indices to assess thermal risks outdoors. In: Holmér I, Kuklane K, Gao C (eds) Environmental Ergonomics XI. Proc. Of the 11th International Conference, 22–26 May, 2005, Ystat, Sweden, pp. 222–225

    Google Scholar 

  20. Blazejczyk K (2011) Assessment of regional bioclimatic contrasts in Poland. Miscellanea Geographica 15(1):79–91

    Google Scholar 

  21. Blazejczyk K, Matzarakis A (2007) Assessment of bioclimatic differentiation of Poland based on the human heat balance. Geogr Pol 80:63–82

    Google Scholar 

  22. Błażejczyk K, Vinogradowa V (2014) Adaptation Strain Index for tourists traveling from central and northern Europe to the Mediterranean. Finisterra XLIX 98:139–152

    Google Scholar 

  23. Blazejczyk K, Holmer I, Nilsson H (1998) Absorption of solar radiation by an ellipsoid sensor simulated the human body. Appl Human Sci 17(6):267–273

    CAS  Article  Google Scholar 

  24. Bodman G (1908) Das Klima als eine Funktion von Temperatur und Windgeschwindigkeit in ihrer Verbindung. Lithogr. Institut des Generalstabs, Stockholm

    Google Scholar 

  25. Bogatkin OG (2006) Meteorological index of Health and economic possibilities of its application. Proceedings of the International conference “Weather and Biosystems”, St.-Petersburg

    Google Scholar 

  26. Botsford JH (1971) A wet globe thermometer for environmental heat measurement. Am Indust Hyg Association J 32:1–10

    CAS  Article  Google Scholar 

  27. Brake D, Bates G (2002) Limiting Metabolic Rate (Thermal Work Limit) as an index of Thermal Stress. Appl Occup Environ Hyg 17(3):176–186

    Article  Google Scholar 

  28. Brauner N, Shacham M (1995) Meaningful wind chill indicators derived from heat transfer principles. Int J Biometeorol 39:46–52

    CAS  Article  Google Scholar 

  29. Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeor 56(3):481–494

    Article  Google Scholar 

  30. Broughton V (2001) Faceted classification as a basis for knowledge organization in a digital environment; the Bliss Bibliographic Classification as a model for vocabulary management and the creation of multidimensional knowledge structures. New Review of Hypermedia and Multimedia 7(1):67–102

    Article  Google Scholar 

  31. Brown RD, Gillespie TJ (1986) Estimating outdoor thermal comfort using a cylindrical radiation thermometer and an energy budget model. Int J Biometeor 30:43–52

    CAS  Article  Google Scholar 

  32. Bruce JL (1916) Vortrag. Roy Soc NSW (public health section) 14(11):1916

    Google Scholar 

  33. Brüner H (1959) Arbeitsmöglichkeiten unter Tage bei erschwerten Klimatischen Bedingungen. Int Z angew Physiol einschl Arbeitsphysiol 18:31–61

    Google Scholar 

  34. Budyko M, Cicenko V (1960) Climatic factors of human thermal sensation. Izv AS USSR Ser Geogr 3:3–11 (in Russian)

    Google Scholar 

  35. Bureau of Indian Standards (1987) Handbook of functional requirements of buildings (other than industrial buildings). New Delhi, SP:41

  36. Burton A, Edholm O (1955) Man in cold environment: physiological and pathological effects of exposure to low temperatures. Edward Arnold, London

    Google Scholar 

  37. Cadarette BS, Montain SJ, Kolka MA, Stroschein L, Matthew W, Sawka MN (1999) Cross validation of USARIEM heat strain prediction models. U.S. ARMY Research Institute of Environmental Medicine. Aviat Space Environ Med 70(10):996–1006

    CAS  Google Scholar 

  38. Dasler AR (1977) Heat stress, work function and physiological heat exposure limits in man. Thermal Analysis-Human Comfort-Indoor Environments, National Bureau of Standards, Washington, D.C. https://play.google.com/books/reader?id=49fL2qrLF8gC&printsec=frontcover&output=reader&authuser=0&hl=en&pg=GBS.PP2

    Google Scholar 

  39. Dayal D (1974) An index for assessing heat stress in terms of physiological strain. PhD thesis, Texas Tech University

  40. De Freitas CR (1985) Assessment of human bioclimate based on thermal response. Int J Biometeorol 29:97–119

    CAS  Article  Google Scholar 

  41. De Freitas CR (1986) Human thermal climates of New Zealand. New Zealand Meteorological Service, Misk Publ, 190, Wellington

  42. De Freitas CR (1987) Bioclimates of heat and cold stress in New Zealand. Weather and Clim 7:55–60

    Google Scholar 

  43. De Freitas CR, Grigorieva E (2009) The Acclimatization Thermal Strain Index (ATSI): a preliminary study of the methodology applied to climatic conditions of the Russian Far East. Int J Biometeorol 53:307–315

    CAS  Article  Google Scholar 

  44. De Freitas CR, Grigorieva EA (2015) A comprehensive catalogue and classification of human thermal climate indices. Int J Biometeorol 59(1):109–120

    CAS  Article  Google Scholar 

  45. De Freitas CR, Ryken MG (1989) Climate and physiological heat strain during exercise. Int J Biometeorol 33:157–164

    CAS  Article  Google Scholar 

  46. De Freitas CR, Symon L (1987) A bioclimatic index of human survival time in the Antarctic. Polar Record 23:651–659

    Article  Google Scholar 

  47. De Paula Xavier AA, Lamberts R (2000) Indices of thermal comfort developed from field survey in Brazil. ASHRAE Trans 106:45–58

    CAS  Google Scholar 

  48. Dorno C (1928) Die Abkühlungsgrösse in verschiedenen Klimaten nach Dauerregistrierungen mittels des Davoser Frigorimeters. Meteorol Zeitschr 45:401–421

    Google Scholar 

  49. Driscoll DM (1992) Thermal comfort indexes: current uses and abuses. Natl Weather Dig 17:33–38

    Google Scholar 

  50. Dufton AF (1929) The eupatheostat. J Scientific Instruments 6:249–251

    Article  Google Scholar 

  51. Eissing G (1995) Climate assessment indices. Ergonomics 38(1):47–57

    Article  Google Scholar 

  52. Evans M (1980) Housing. Climate and comfort. London: Architectural Press. J. Wiley, New York 186 p

    Google Scholar 

  53. Falconer R (1968) Windchill, a useful wintertime weather variable. Weatherwise 21:227–229

    Article  Google Scholar 

  54. Fanger PO (1970) Thermal comfort: analysis and applications in environmental engineering. Danish Technical Press, Copenhagen

    Google Scholar 

  55. Fanger PO, Melikov AK, Hanzawa H, Ring J (1988) Air turbulence and sensation of draught. Energ Bldg 12(1):21–39

    Google Scholar 

  56. Flügge C (1912) Akten des Kgl. Oberbergamtes zu Halle/Sa. XXVa, 36-1, 13248/05; 18583/05

  57. Frank A, Moran D, Epstein Y, Belokopytov M, Shapiro Y (1996) The estimation of heat tolerance by a new cumulative heat strain index. In: Shapiro Y, Moran D, Epstein Y (eds) Environmental Ergonomics: Recent Progress and New Frontiers. Freund Publishing House, Tel Aviv-London, pp. 194–197

    Google Scholar 

  58. Gagge AP (1941) Standard operative temperature, a single measure of the combined effect of radiant temperature, of ambient temperature and of air movement on the human body. In: Temperature, Its Measurement and Control in Science and Industry. Reinhold, New York, pp. 544–552

    Google Scholar 

  59. Gagge AP, Fobelts AP, Berglund LG (1986) A standard predictive index of human response to the thermal environment. ASHRAE Trans 92:709–731

    Google Scholar 

  60. Gagge AP, Stolwijk JAJ, Nishi Y (1971) An effective temperature scale based on a simple model of human physiological temperature response. ASHRAE Trans 72:247–262

    Google Scholar 

  61. Gallagher M Jr, Robertson RJ, Goss FL, Nagle-Stilley EF, Schafer MA, Suyama J, Hostler D (2012) Development of a perceptual hyperthermia index to evaluate heat strain during treadmill exercise. Europ J Appl Physiol 112(6):2025–2034

    Article  Google Scholar 

  62. Givoni B (1969) Man, Climate and Architecture. Elseveir Publishing Company Limited, Amsterdam

    Google Scholar 

  63. Givoni B, Goldman RF (1972) Predicting rectal temperature response to work, environment and clothing. J Appl Physiol 32:812–822

    CAS  Google Scholar 

  64. Givoni B, Goldman RF (1973a) Predicting effects of heat acclimatization on heart rate and rectal temperature. J Appl Physiol 35:875–879

    CAS  Google Scholar 

  65. Givoni B, Goldman RF (1973b) Predicting heart rate response to work, environment, and clothing. J Appl Physiol 34:201–204

    CAS  Google Scholar 

  66. Givoni B, Noguchi M, Saaroni H, Pochter O, Yaacov Y, Feller N, Becker S (2003) Outdoor comfort research issues. Energy and Buildings 35:77–86

    Article  Google Scholar 

  67. Gonzalez RR, Bergulnd LG, Gagge AP (1978) Indices of thermoregulatory strain for moderate exercise in the heat. J Appl Physiol 44:889–899

    CAS  Google Scholar 

  68. Gonzalez RR, Nishi Y, Gagge AP (1974) Experimental evaluation of standard effective temperature a new biometeorological index of man's thermal discomfort. Int J Biometeorol 18(1):1–15

    CAS  Article  Google Scholar 

  69. Graveling RA, Morris LA, Graves RJ (1988) Working in hot conditions in mining: a literature review. Historical research report. Research Report TM/88/13. Institute of Occupational Medicine, Edinburgh Scotland

    Google Scholar 

  70. Gregorczuk M (1968) Bioclimates of the world related to air enthalpy. Int J Biometeorol 12:33–39

    Article  Google Scholar 

  71. Gregorczuk M, Cena K (1967) distribution of effective temperature over the surface of the Earth. Int J Biometeorol 2:145–149

    Article  Google Scholar 

  72. Haldane JBS (1905) The influence of high air temperatures. J Hygiene 5:494–513

    CAS  Article  Google Scholar 

  73. Hall JF, Polte JW (1960) Physiological index of strain and body heat storage in hyperthermia. J Appl Physiol 15:1027–1030

    Google Scholar 

  74. Hamdi M, Lachiver G, Michaud F (1999) A new predictive thermal sensation index of human response. Energy and Building 29:167–178

    Article  Google Scholar 

  75. Hevener OF (1959) All about humiture. Weatherwise 12:83–85

    Article  Google Scholar 

  76. Hill L, Hargood-Ash D (1919) On the cooling and evaporative powers of the atmosphere, as determined by the kata-thermometer. Proc R Soc Lond B Biol Sci 90:438–447

    CAS  Article  Google Scholar 

  77. Hill L, Griffith OW, Flack M (1916) The measurement of the rate of heat loss at body temperature by convection, radiation and evaporation. Physiological Trans of the Royal Society B 207:183–220

    Article  Google Scholar 

  78. Holmer I (1984) Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE Trans 90:1116–1128

    Google Scholar 

  79. Holmer I (1988) Assessing of cold stress in terms of required clothing insulation IREQ. Int J Indust Ergon 3:159–166

    Article  Google Scholar 

  80. Holmer I (1993) Work in the cold. Review of methods for assessment of cold exposure. Int Archives of Occupational and Environmental Health 65(3):147–155

    CAS  Article  Google Scholar 

  81. Hori S (1978) Index for the assessment of heat tolerance. J Human Ergol (Tokyo) 7:135–144

    CAS  Google Scholar 

  82. Houghten FC, Yagloglou CP (1923) Determining lines of equal comfort. J Am Soc Heat Vent Eng 29:165–176

    Google Scholar 

  83. Hubac M, Strelka F, Borsky I, Hubacova L (1989) Application of the relative summary climatic indices during work in heat for ergonomic purposes. Ergonomics 32(7):733–750

    CAS  Article  Google Scholar 

  84. Ionides M, Plummer J, Siple PA (1945) The thermal acceptance ratio. Report from climatology and environmental protection section. United States: Office of the US Quartermaster General (Interim report no 17)

  85. Jendritzky G, Nübler W (1981) A model analysing the urban thermal environment in physiologically significant terms. Arch Met Geoph Biokl Ser B 29:313–326

    Article  Google Scholar 

  86. Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428

    Article  Google Scholar 

  87. Jendritzky G, Havenith G, Weihs P, Batchvarova E (2009) Towards a Universal Thermal Climate Index UTCI for assessing the thermal environment of the human being. Final Report COST Action 730, Freiburg

  88. Jendritzky G, Staiger H, Bucher K, Graetz A, Laschewski G. (2000) The perceived temperature—the method of the Deutscher Wetterdienst for the assessment of cold stress and heat load for the human body. In: Internet Workshop on Windchill, hosted by Environment Canada, April 3-7, 2000; available at http://windchill-conference.ec.gc.ca/workshop/papers/pdf/session_1_paper_4_e.pdf

  89. Jokl MV (1982) Standard layers—a new criterion of the thermal insulating properties of clothing. Int J Biometeorol 26:37–48

    Article  Google Scholar 

  90. Kalkstein LS, Valimont KM (1986) An evaluation of summer discomfort in the United States using a relative climatological index. Bull Am Meteorol Soc 67:842–848

    Article  Google Scholar 

  91. Kalkstein LS, Valimont KM (1987) An evaluation of winter weather severity in the United States using the weather stress index. Bull Am Meteorol Soc 68:1535–1540

    Article  Google Scholar 

  92. Kalkstein LS, Nichols MC, Barthel CD, Greene JS (1996) A New Spatial Synoptic Classification: application to air mass analysis. Int J Climatol 16(8):983–1004

    Article  Google Scholar 

  93. Kamon E, Ryan C (1981) Effective heat strain index using pocket computer. Am Indust Hyg Assoc J 42:611–615

    CAS  Article  Google Scholar 

  94. Kawamura W (1965) Distribution of discomfort index in Japan in summer season. J Met Research 17(7):460–466

    Google Scholar 

  95. Keller AA, Kuvakin VI (1998) Medical ecology. St-Petersburg: "The Petrograd and Co". 256 p. (in Russian)

  96. Kerslake DM (1972) The stress of hot environment. Cambridge University Press, Cambridge

    Google Scholar 

  97. Keyantash J, Dracup JA (2002) The Quantification of Drought: An Evaluation of Drought Indices. Bull Amer Meteorol Soc 83:1167–1180

    Article  Google Scholar 

  98. Kondratyev GM (1957) Approximate thermal assessment of clothing insulation. Trans V(C)NIISP, 6 (in Russian)

  99. Lally VE, Watson BF (1960) Humiture revisited. Weatherwise 13:254–256

    Article  Google Scholar 

  100. Landsberg HE (1972) The assessment of Human Bioclimate. A limited review of physical parameters. W.M.O. Tech. Note No. 123

  101. Latyshev GT, Boksha VG (1965) Concerning medical estimation of weather (weather index and patients response). Questions of kurortol 4:345–351 (in Russian)

    Google Scholar 

  102. Lecha L (1998) Biometeorological classification of daily weather types for the humid tropics. Int J Biometeorol 42:77–83

    Article  Google Scholar 

  103. Lee DHK (1958) Proprioclimates of man and domestic animals. Climatology: reviews of research. UNESCO Conf. Paris, 1956. Arid Zone Research Ser 10:102–125

    Google Scholar 

  104. Lee DHK, Henschel A (1966) Effects of physiological and clinical factors on response to heat. Ann NY Acad Sci 134:743–749

    Article  Google Scholar 

  105. Lee DHK, Vaughan IA (1964) Temperature equivalent of solar radiation on man. Int J Biometeorol 8(1):61–69

    CAS  Article  Google Scholar 

  106. Lind AR, Hellon RF (1957) Assessment of physiologic severity of hot climate. J Appl Physiol 11:35–40

    CAS  Google Scholar 

  107. Linke F (1926) Die Übertemperatur einer frei aufgestellten schwarzen Kugel. Meteorol Zeitschr 43:11

    Google Scholar 

  108. Liopo TN, Cicenko GV (1971) Climatic conditions and human thermal state. Leningrad Hydrometeorological Publishing House (in Russian)

  109. Macpherson RK (1962) The assessment of the thermal environment. A review. British J Indust Medicine 19:151–164

    CAS  Google Scholar 

  110. Mahoney C (1967) (1967) The determination of standards for thermal comfort. The Architectural Association, London

    Google Scholar 

  111. Malchaire J, Piette A, Kampmann B, Mehnert P, Gebhardt H, Havenith G, den Hartog E, Holmer I, Parsons K, Alfano G, Griefahn B (2001) Development and validation of the predicted heat strain model. Ann Occup Hyg 45(2):123–135

    CAS  Article  Google Scholar 

  112. Maloney SK, Forbes CF (2011) What effect will a few degrees of climate change have on human heat balance? Implications for human activity. Int J Biometeorol 55:147–160

    Article  Google Scholar 

  113. Masterson J, Richardson FA (1979) Humidex, a method of quantifying human discomfort due to excessive heat and humidity. Environment Canada, Downsview, Ontario http://ptaff.ca/humidex/?lang=en_CA

    Google Scholar 

  114. Mateeva Z, Filipov A (2003) Bioclimatic distance index in the Rila and Rhodopy area of Bulgaria. Błażejczyk K, Krawczyk B, Kuchcik M (eds.), Postępy w badaniach klimatycznych i bioklimatycznych. Prace Geografi czne IGiPZ PAN 188:295–302

    Google Scholar 

  115. Matyukhin VA, Kushnirenko EY (1987) Complex quality assessment of environmental influence on the human body. Proceedings of the WMO; WHO, UNEP-Symposium on Climate and Human Health in Leningrad 1986, WMO-WCP , Geneva 2:41–45

    Google Scholar 

  116. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38:43–49

    Article  Google Scholar 

  117. McArdle B, Dunham W, Holling HE, Ladell WSS, Scott JW, Thomson ML, Weiner JS (1947) The prediction of the Physiological Effects of Warm and Hot Environments. Med. Res. Coun. RNP Rep. 47/391 HMSO, London

  118. McIntyre DA (1973) A guide to thermal comfort. Appl Ergonomics 4(2):66–72

    CAS  Article  Google Scholar 

  119. McLaughlin JT, Shulman M (1977) An anthropocentric summer severity index. Int J Biometeorol 21:16–28

    CAS  Article  Google Scholar 

  120. McPherson MJ (1992) The generalization of air cooling power. In: Proceedings of the 5th International Mine Ventilation Congress. Johannesburg: Mine Ventilation Society of South Africa http://www.scribd.com/emiliofar/d/78400695/19-Air-Cooling-Power

  121. Mehnert P, Malchaire J, Kampmann B, Piette A, Griefahn B, Gebhardt HJ (2000) Prediction of the average skin temperature in warm and hot environments. Europ J Appl Physiol 82:52–60

    CAS  Article  Google Scholar 

  122. Missenard A (1933) Étude physiologique et technique de la ventilation. Léon Eyrolles, Paris

    Google Scholar 

  123. Missenard A (1935) Théorie simplifié du Thermomètre Résultant. Chauf Vent 12:347–352

    Google Scholar 

  124. Missenard A (1948) Équivalence thermique des ambiances: équivalences de passage, équivalences de séjours. Chaleur et Industrie 276:159–172 277:189–198

    Google Scholar 

  125. Mitchell D, Whillier A (1971) Cooling power of underground environments. J S Afr Inst Min and Metallurg 72:93–99

    Google Scholar 

  126. Mochida T (1979) Comfort chart: an index for evaluating thermal sensation. Memoirs of the Faculty of Engineering, Hokkaido University 15(2):175–185

    Google Scholar 

  127. Moran DS (2000) Stress evaluation by the physiological strain index (PSI). J Basic & Clinical Physiol and Pharmacol 11(4):403–423

    CAS  Article  Google Scholar 

  128. Moran DS, Shapiro Y, Epstein Y, Matthew W, Pandolf KB (1998a) A modified discomfort index (MDI) as an alternative to the wet bulb globe temperature (WBGT). In: Hodgdon JA, Heaney JH, Buono MJ (eds) Environmental Ergonomics VIII. Int Conf Environ Ergo, San Diego, pp. 77–80

    Google Scholar 

  129. Moran DS, Shitzer A, Pandolf KB (1998b) A physiological strain index to evaluate heat stress. Am J Physiol Regul Integr Comp Physiol 275:R129–R134

    CAS  Google Scholar 

  130. Moran DS, Castellani JW, O’Brien C, Young AJ, Pandolf KB (1999) Evaluating physiological strain during cold exposure using a new cold strain index. Am J Physiol 277(46):R556–R564

    CAS  Google Scholar 

  131. Moran DS, Pandolf KB, Laor A, Heled Y, Matthew WT, Gonzalez RR (2003) Evaluation and refinement of the environmental stress index (ESI) for different climatic conditions. J Basic Clin Physiol Pharmacol 14(1):1–15

    CAS  Article  Google Scholar 

  132. Moran DS, Pandolf KB, Shapiro Y, Heled Y, Shani Y, Mathew WT, Gonzalez RR (2001) An environmental stress index (ESI) as a substitute for the wet bulb globe temperature (WBGT). J Therm Biol 26:427–431

    Article  Google Scholar 

  133. Mount LE, Brown D (1982) The use of the meteorological records in estimating the effects of weather on sensible heat loss from sheep. Agric Meteorol 27:241–255

    Article  Google Scholar 

  134. Mount LE, Brown D (1985) The calculation from weather records of the requirement for clothing insulation. Int J Biometeorol 29:311–321

    Article  Google Scholar 

  135. Nagano K, Horikoshi T (2011) Development of outdoor thermal index indicating universal and separate effects on human thermal comfort. Int J Biometeorol 55(2):19–227

    Article  Google Scholar 

  136. NIOSH (1986) Criteria for a recommended standard: occupational exposure to hot environment, National Institute for Occupational Safety and Health. DHHS (NIOSH) Publication No 86–113, Washington DC, pp. 101–110

    Google Scholar 

  137. Nishi Y, Gagge AP (1971) Humid operative temperature: a biophysical index of thermal sensation and discomfort. J de Physiologie 63:365–368

    CAS  Google Scholar 

  138. OFCM (2003) Report on Wind Chill Temperature and Extreme Heat Indices: Evaluation and Improvement Projects. US Department of Commerce, Federal Coordinator for Meteorological Services and Supporting Research, FCM-R19-2003, Washington DC (http://www.ofcm.gov/jagti/r19-ti-plan/r19-ti-plan.htm)

    Google Scholar 

  139. Ogunsote OO, Prucnal-Ogunsote B (2003) Choice of a thermal index for architectural design with climate in Nigeria. Habitat International 27:63–81

    Article  Google Scholar 

  140. Ono HP, Kawamura T (1991) Sensible climates in monsoon Asia. Int J Biometeorol 35:39–47

    CAS  Article  Google Scholar 

  141. Osczevski R, Bluestein M (2005) The new wind chill equivalent temperature chart. Bull Am Meteorol Soc 86(10):1453–1458

    Article  Google Scholar 

  142. Osokin IM (1968) About severity of winter in northern Asia. Problems of regional researches of winter season. Chita, Zabaikalsk Geographical Society of the USSR 2:28–31 (in Russian)

    Google Scholar 

  143. Ott WR, Thom GA (1976) A critical review of air pollution index system in the. United States and Canada J Air Pollut Contr Assoc 26(5):460–470

    CAS  Article  Google Scholar 

  144. Pandolf KB, Moran DS (2001) New Heat and Cold Strain Predictive Indices. RTO HFM Symposium on “Blowing Hot and Cold: Protecting Against Climatic Extremes”, Dresden, Germany

    Google Scholar 

  145. Pandolf KB, Stroschein LA, Drolet LL, et al. (1986) Prediction modelling of physiological responses and human performance in the heat. Comput Biol Med 6:319–329

    Article  Google Scholar 

  146. Parsons K (2014) Human thermal environments: the effects of hot, moderate, and cold environments. CRC Press (Taylor and Francis Group), London 635 pp

    Book  Google Scholar 

  147. Pedersen L (1948) Vaermestraalingsundersogelser. Committee for the study of domestic heating, Contribution Nr. 2, Kopenhagen

    Google Scholar 

  148. Pepi JW (1987) The summer simmer index. Weatherwise 3:143–145

    Article  Google Scholar 

  149. Pepi JW (1999) The new Summer Simmer Index: a comfort index for the new millennium (http://www.summersimmer.com/home.htm)

  150. Pickup J, de Dear R (2000) An Outdoor Thermal Comfort Index (OUT_SET*)—Part I—the model and its assumptions. In: de Dear R, Kalma J, Oke T, Auliciems A (eds): Biometeorology and urban climatology at the turn of the millennium. Selected Papers from the Conference ICB-ICUC'99 (Sydney, 8–12 Nov. 1999). WMO, Geneva, WCASP 50:279–283

  151. Poschmann A (1932) Dissertation. Frankfurt

    Google Scholar 

  152. Pulket C, Henschel A, Burg WR, Saltzman BE (1980) A comparison of heat stress indices in a hot-humid environment. Am Indust Hyg Assoc J 41(6):442–449

    CAS  Article  Google Scholar 

  153. Rissanen S, Rintamäki H (2007) Cold and heat strain during cold-weather field training with nuclear, biological, and chemical protective clothing. Military Medicine 172(2):128–132

    Article  Google Scholar 

  154. Robinson S, Turrel ES, Gerking SD (1945) Physiologically equivalent conditions of air temperature and humidity. Am J Physiol 143:21–32

    Google Scholar 

  155. Rodriguez C, Mateos J, Garmendia J (1985) Biometeorological Comfort Index. Int J Biometeorol 29(2):121–129

    CAS  Article  Google Scholar 

  156. Rohles FH, Nevin RG (1971) The nature of thermal comfort for sedentary man. ASHRAE Trans 77(1):239–246

    Google Scholar 

  157. Rohles F, Hayter R, Milliken G (1975) Effective temperature (ET*) as a predictor of thermal comfort. ASHRAE Trans 81(2):148–156

    Google Scholar 

  158. Rublack K, Medvedeva EF, Gaebelin H, Noach H, Schulz G (1981) Integrative bewertung der warmebelastung durch arbeit und klima (Integrative evaluation of heat loading due to work and climate). Zeitschrift fur die Gesamte Hygiene und ihre Grenzgebiete 27:12–17

    CAS  Google Scholar 

  159. Rusanov VI (1973) Methods of climate research in medical purposes. Tomsk State University, Tomsk (in Russian)

    Google Scholar 

  160. Rusanov VI (1981) Complex meteorological indices and methods of climate assessment in medical purposes. Tomsk, Tomsk State University, Handbook for Students (in Russian)

    Google Scholar 

  161. Rusanov VI (1987) Climate and human health. Proceedings of the WMO; WHO, UNEP-Symposium on Climate and Human Health in Leningrad 1986. WMO-WCP, Geneva 2:101–106

    Google Scholar 

  162. Rusanov VI (1989) Appraisal of meteorological conditions defining human respiration. Bull Russ Acad Med Sci 1:57–60 (in Russian)

    Google Scholar 

  163. Santee WR, Wallace RF (2003) Evaluation of weather service heat indices using the USARIEM heat strain decision aid (HSDA) model. USARIEM technical report

    Google Scholar 

  164. Scharlau K (1943) Die Schwüle als Messbare Grösse. Bioklimat Beibl 10:19–23

    Google Scholar 

  165. Schoen CA (2005) New empirical model of the Temperature–Humidity Index. J Appl Meteorol 44:1413–1420

    Article  Google Scholar 

  166. Sheleihovskyi GV (1948) Microclimate of southern cities. Moscow, Academy of Medicine Sciences of the USSR (in Russian)

    Google Scholar 

  167. Sheridan SC (2002) The redevelopment of a weather type classification scheme for North America. Int J Climatol 22:51–68

    Article  Google Scholar 

  168. Siple PA, Passel CF (1945) Measurements of dry atmospheric cooling in sub-freezing temperatures. Proc Am Philos Soc 89:177–199

    Google Scholar 

  169. Smith FE (1952) Effective temperature as an index of physiological stress. Royal Navy Personnel Research Committee Report No RNP 53/728. London, Medical Research Council

  170. Smithson PA, Baldwin H (1979) The cooling power of wind and its influence on human comfort in upland areas of Britain. Arch Meteorol Geoph Biokl, Ser B 27:361–380

    Article  Google Scholar 

  171. Sohar E, Tennenbaum J, Yaski D (1962) Estimation of daily water intake (to replace water loss) from the cumulative discomfort index. In: Tromp SW (ed) Biometeorology. Pergamon Press, Oxford, pp. 401–403

    Chapter  Google Scholar 

  172. Staiger H, Laschewski G, Grätz A (2012) The perceived temperature—a versatile index for the assessment of the human thermal environment. Part A: scientific basics. Int J Biometeorol 56:165–176

    Article  Google Scholar 

  173. Steadman RG (1971) Indices of windchill of clothed persons. J Appl Meteorol 10:674–683

    Article  Google Scholar 

  174. Steadman RG (1979) The assessment of sultriness. Part I: A temperature-humidity index based on human physiology and clothing science. J Appl Meteorol 18:861–873

    Article  Google Scholar 

  175. Steadman RG (1984) A universal scale of apparent temperature. J Clim Appl Meteorol 23:1674–1687

    Article  Google Scholar 

  176. Steadman RG (1994) Norms of apparent temperature in Australia. Aust Met Mag 43:1–16

    Google Scholar 

  177. Tennenbaum J, Sohar E, Adar R, Gilat T, Yaski D (1961) The physiological significance of the cumulative discomfort index (Cum DI). Harefuah 60:315–319

    CAS  Google Scholar 

  178. Terjung WH (1966) Physiologic climates of the conterminous US: a bioclimatological classification based on man. Ann Am Ass Geogr 56:141–179

    Article  Google Scholar 

  179. Terjung WH (1968) World patterns of distribution of the monthly comfort index. Int J Biometeorol 12:119–151

    Article  Google Scholar 

  180. Thilenius R, Dorno C (1925) Das Davoser Frigorimeter (ein Instrument zur Dauerregistrierung der physiologischen Abkühlungsgrösse). Meteorol Zeitschr 42:57–60

    Google Scholar 

  181. Thom EC (1957) A new concept of cooling degree days. Air Condit Heat and Ventil 54(6):73–80

    Google Scholar 

  182. Thom EC, Bosen JF (1959) The discomfort index. Weatherwise 12:57–60

    Article  Google Scholar 

  183. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geographical review 84(1):55–94

    Article  Google Scholar 

  184. Thornthwaite CW, Mather JR, Carter DB (1957) Instructions and tables for computing potential evapotrancpiration and the water balance. Centerton NJ, Laboratory of Climatology, Publications in Climatology 10(3):1–104

    Google Scholar 

  185. Tikhomirov II (1968) Bioclimatology of Central Antarctica and human acclimatization. Nauka, Moscow (in Russian)

    Google Scholar 

  186. Tikuisis P, Mclellan TM, Selkirk G (2002) Perceptual versus physiological heat strain during exercise-heat stress. Med Sci Sports Exerc 34(9):1454–1461

    Article  Google Scholar 

  187. Tromp SW (1966) A physiological method for determining the degree of meteorological cooling. Nature 210:486–487

    CAS  Article  Google Scholar 

  188. Vernon HM (1932) The measurement of radiant heat in relation to human comfort. J Indust Hyg 14:95–111

    Google Scholar 

  189. Vernon HM, Warner CG (1932) The influence of the humidity of the air on capacity for work at high temperatures. J Hyg 32:431–462

    CAS  Article  Google Scholar 

  190. Vogt JJ, Candas V, Libert JP (1982) Graphical determination of heat tolerance limits. Ergonomics 25(4):285–294

    CAS  Article  Google Scholar 

  191. Vogt JJ, Candas V, Libert JP, Daull F (1981) Required sweat rate as an index of thermal strain in industry. In: Cena K, Clark JA (eds) Bioengineering, thermal physiology and comfort. Elsevier, Amsterdam, pp. 99–110

    Chapter  Google Scholar 

  192. Wallace RF, Kriebel D, Punnett L, Wegman DH, Wenger CB, Gardner JW, Gonzales RR (2005) The effects of continuous hot weather training on risk of exertional heat illness. Med Sci Sports Exerc 37:84–90

    Article  Google Scholar 

  193. Watts JD, Kalkstein SL (2004) The development of a Warm-Weather Relative Stress Index for environmental applications. J Appl Meteorol 43:503–513

    Article  Google Scholar 

  194. Webb CG (1959) An analysis of some observations of thermal comfort in an equatorial climate. British J Indust Medicine 16:297–310

    CAS  Google Scholar 

  195. Weiss M (1982) The humisery and other measures of summer discomfort. Nat Weather Digest 7(2):10–18

    Google Scholar 

  196. Wenzel HG (1978) Heat stress upon undressed man due to different combinations of elevated environmental temperature, air humidity, and metabolic heat production: a critical comparison of heat stress indices. J Human Ergol 7:185–206

    CAS  Google Scholar 

  197. Winslow CEA, Herrington LP (1949) Temperature and human life. Princeton University Press, Princeton

    Google Scholar 

  198. Winslow CEA, Gagge AP, Greenburg L, Moriyama IM, Rodee EJ (1935) The calibrating of the thermo-integrator. Am J Hygiene 22:137–156

    Google Scholar 

  199. Winslow CEA, Herrington LP, Gagge AP (1937) Physiological reactions of the human body to varying environmental temperatures. Am J Physiol 120:1–22

    CAS  Google Scholar 

  200. Winterling GA (1979) Humiture-revised and adapted for the summer season in Jacksonville, Florida. Bull Am Meteorol Soc 60:329–330

    Google Scholar 

  201. Yaglou CP, Minard D (1957) Control of heat casualties at military training centers. Arch Indust Health 16:302–316

    CAS  Google Scholar 

  202. Young KC (1979) The influence of environmental parameters on heat stress during exercise. J Appl Meteorol 18:886–897

    Article  Google Scholar 

  203. Zaninović K (1992) Limits of warm and cold bioclimatic stress in different climatic regions. Theoretic Appl Climatol 45(1):65–70

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to C. R. de Freitas.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Freitas, C.R., Grigorieva, E.A. A comparison and appraisal of a comprehensive range of human thermal climate indices. Int J Biometeorol 61, 487–512 (2017). https://doi.org/10.1007/s00484-016-1228-6

Download citation

Keywords

  • Thermal indices
  • Human climate assessment
  • Index evaluation