A possible association between space weather conditions and the risk of acute coronary syndrome in patients with diabetes and the metabolic syndrome

Abstract

Hyperglycemia negatively affects cardiovascular variables that are also adversely affected by increased geomagnetic activity. It is likely that geomagnetic storms (GS) could have a stronger negative impact on these patients. We analyzed data on 1548 randomly selected patients with acute coronary syndrome (ACS) who were admitted inpatient treatment in Kaunas city, during 2000–2003. We evaluated the associations of GS, solar proton events (SPE), and high-speed solar wind (HSSW) (solar wind speed ≥600 km/s) with the risk of ACS in patients with diabetes mellitus (DM) and the metabolic syndrome (MS) by using logistic regression with categorical predictors. During days of HSSW, the risk of ACS in DM patients increased by 1.95 times (OR = 1.95, 95 % CI 1.36–2.79) as compared to days without either of these events or 2 days prior to or after them. In the multivariate model, the risk of ACS in DM patients was associated with days of HSSW and 1–2 days after (OR = 1.40, 95 % CI 1.01–1.93), with days of GS lasting >1 day and occurring on days of HSSW or 1–2 days after (OR = 2.31, 95 % CI 1.28–4.17), and with the onset of SPE (OR = 2.72 (1.09–6.83)). The risk of ACS in MS patients was associated with days of GS and 1–2 days prior or after GS (OR = 1.31 (1.00–1.73)); an additional impact was established if these days coincided with days of HSSW or 1–2 days before (OR = 2.16 (1.39–3.35)). These findings suggest that not only GS but also HSSW and changes in space weather conditions prior to SPE affect the human cardiovascular system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. ACE (2003) Position statement on the insulin resistance syndrome. Endocr Pract 9:240–252

    Google Scholar 

  2. Babayev ES, Crosby NB, Obridko VN, Rycroft RJ (2012) Potential effects of solar and geomagnetic variability on terrestrial biological systems. In: Georgeta M, Crisan D (eds) Advances in solar and solar- terrestrial physics. Research Signpost, Kerala, pp. 329–376

    Google Scholar 

  3. Bagherzadeh A, Nejati-Afkham A, Tajallizade-Khoob Y, Shafiee A, Sharifi F, Esfahani MA, et al. (2013) Association of cardiac autonomic neuropathy with arterial stiffness in type 2 diabetes mellitus patients. J Diabetes Metab Disord 12(55):1–6

    Google Scholar 

  4. Beckmanm JA, Libby P, Creager MA (2005) Diabetes mellitus, the metabolic syndrome, and atherosclerotic vascular disease. Braun-wald’s heart disease: a textbook of cardiovascular medicine. 43:1035–1046

  5. Behar S, Boyko V, Reicher-Reiss H, Goldbourt U, SPRINT Study Group (1997) Ten year survival after acute myocardial infarction: comparison of patients with and without diabetes: Secondary Prevention Reinfarction Israeli Nifedipine Trial. Am Heart J 133:290–296

    CAS  Article  Google Scholar 

  6. Breus TK, Baevskii RM, Chernikova AG (2012) Effects of geomagnetic disturbances on humans functional state in space flight. J Biomed Sci Eng 5:341–355

    Article  Google Scholar 

  7. Burch JB, Reif JS, Yost MG (1999) Geomagnetic disturbances are associated with reduced nocturnal excretion of melatonin metabolite in humans. Neurosci Lett 266:209–212

    CAS  Article  Google Scholar 

  8. Carr ME (2001) Diabetes mellitus: a hypercoagulable state. J Diabetes Complicat 15:44–54

    CAS  Article  Google Scholar 

  9. Cherry NJ (2002) Schumann resonances, a plausible biophysical mechanism for the human health effects of solar/geomagnetic activity. Nat Hazards 26(3):279–331

    Article  Google Scholar 

  10. Cornelissen G, Halberg F, Breus T, Syutkina EV, Baevsky R, Weydahl A, et al. (2002) Non-photic solar associations of heart rate variability and myocardial infarction. J Atmos Sol Terr Phys 64:707–720

    Article  Google Scholar 

  11. Davi G, Catalano I, Averna M, Notarbartolo A, Strano A, Ciabatoni G, Patrolo C (1990) Thromboxane biosynthesis and platelet function in type II diabetes mellitus. N Engl J Med 322:1769–1774

    CAS  Article  Google Scholar 

  12. Deedwania PC, Ahmed MI, Feller MA, Aban IB, Love TE, Pitt B, Ahmed A (2011) Impact of diabetes mellitus on outcomes in patients with acute myocardial infarction and systolic heart failure. Eur J Heart Fail 13(5):551–559

    Article  Google Scholar 

  13. Di Carli MF, Janisse J, Grunberger G, Ager J (2003) Role of chronic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 41(8):1387–1393

    Article  Google Scholar 

  14. Dimitrova S, Stoilova I, Cholakov I (2004) Influence of local geomagnetic storms on arterial blood pressure. Βioelectromagnetics 25:408–414

    CAS  Article  Google Scholar 

  15. Dimitrova S, Stoilova I, Georgieva K, Taseva T, Jordanova M, Maslarov D (2009) Solar and geomagnetic activity and acute myocardial infarction morbidity and mortality. Fundam Space Res, Supl. of Compt. Rend. Acad. Bulg. Sci. 161–165

  16. Dominguez-Rodriguez A, Abreu-Gonzalez P, Sanchez-Sanchez J, Kaski J, Reiter R (2010) Melatonin and circadian biology in human cardiovascular disease. J Pineal Res 49:14–22

    CAS  Google Scholar 

  17. Franklin K, Goldberg RJ, Spencer F, Investigators GRACE (2004) Implications of diabetes in patients with acute coronary syndromes. The global registry of acute coronary events. Arch Intern Med 164(13):1457–1463

    Article  Google Scholar 

  18. Ghione S, Mezzasalma L, Del Seppia C, Papi F (1998) Do geomagnetic disturbances of solar origin affect arterial blood pressure? J Hum Hypertens 12(11):749–754

    CAS  Article  Google Scholar 

  19. Gresele P, Guglielmini G, De Angelis M, Ciferri S, Ciofetta M, Falcinelli E, et al. (2003) Acute, short-term hyperglycemia enhances shear stress-induced platelet activation in patients with type II diabetes mellitus. J Am Coll Cardiol 41(6):1013–1020

    CAS  Article  Google Scholar 

  20. Gurfinkel’ II, Kuleshiva VP, Oraevskiĭ VN (1998) Assessment of the effect of a geomagnetic storm on the frequency of appearance of acute cardiovascular pathology. [in Russian]. Biofizika 43(4):654–658

    Google Scholar 

  21. Gurfinkel’ II, Liubimov VV, Oraevskii VN, Parfenova LM, Iur’ev AS (1995) The effect of geomagnetic disturbances in capillary blood flow in ischemic heart disease patients. [in Russian]. Biofizika 40(4):793–799

    Google Scholar 

  22. Harrison RG, Nicoll KA, McWilliams KA (2013) Space weather driven changes in lower atmosphere phenomena. J Atmos Sol Terr Phys 98:22–30

    Article  Google Scholar 

  23. Harrison RG, Usoskin I (2010) Solar modulation in surface atmospheric electricity. J Atmos Sol Terr Phys 72:176–182

    Article  Google Scholar 

  24. Kannel WB, McGee DL (1979) Diabetes and cardiovascular disease: the Framingham study. JAMA 241:2035–2038

    CAS  Article  Google Scholar 

  25. Katsavrias C, Preka-Papadema P, Moussas X, Apostolou T, Theodoropoulou A, Papadima T (2013) Helio-geomagnetic influence in cardiological cases. Adv Space Res 51:96–106

    Article  Google Scholar 

  26. Khabarova OV, Yermolaev YI (2008) Solar wind parameters’ behavior before and after magnetic storms. J Atmos Sol Terr Phys 70:384–390

    Article  Google Scholar 

  27. Kleimenova NG, Kozyreva OV, Rapoport SI (2007) Pc1 geomagnetic pulsations as a potential hazard of the myocardial infarction. J Atmos Sol Terr Phys 69(14):1759–1764

    Article  Google Scholar 

  28. Liu W, Sarris TE, Li X, Ergun R, Angelopoulos B, Glassmeier KH (2010) Solar wind influence on Pc4 and Pc5 ULF wave activity in the inner magnetosphere. J Geophys Res 115:A12201. doi:10.1029/2010JA015299

    Google Scholar 

  29. Mathie RA, Mann IR (2001) On the solar wind control of Pc5 ULF pulsation power at mid-latitudes- implications for MeV electron acceleration in the outer radiation belt. J Geophys Res 106(A12):29783–29796

    Article  Google Scholar 

  30. Matveyeva ET, Shchepetnov RV (2007) Temporal characteristics and medical aspects of Pc1 geomagnetic pulsations. J Atmos Sol Terr Phys 69(14):1747–1752

    Article  Google Scholar 

  31. Mavromichtaki H, Papailiou M, Dimitrova S, Babayev ES, Loucas P (2012) Space weather hazards and their impact on human cardio-health state parameters on earth. Nat Hazards 64:1447–1459

    Article  Google Scholar 

  32. Mendoza B, Diaz-Sandoval R (2000) Relationship between solar activity and myocardial infarctions in Mexico City. Geofis Int 39(1):53–56

    CAS  Google Scholar 

  33. Nakayama S, Atsuta S, Shinmi T, Uchiyama T (2011) Pulse-driven magnetoimpedance sensor detection of biomagnetic fields in musculatures with spontaneous electric activity. Biosens Bioelectron 27(1):34–39

    CAS  Article  Google Scholar 

  34. Olsson L, Pettersen E, Ahlbom A, Carlsson S, Midthjell K, Grill V (2011) No effect by the common gene variant rs10830963 of the melatonin receptor 1B on the association between sleep disturbances and type 2 diabetes: results from the Nord-Trøndelag health study. Diabetologia 54:1375–1378

    CAS  Article  Google Scholar 

  35. Oraevskiĭ VN, Breus TK, Baevskiĭ RM, Rapoport SI, Petrov VM, Barsukova ZHV, et al. (1998) Effect of geomagnetic activity on the functional status of the body. [in Russian]. Biofizika 43(5):819–826

    Google Scholar 

  36. Peschke E, Bahr I, Muhlbauer E (2015) Experimental and clinical aspects of melatonin and clock genes in diabetes. J Pineal Res 59:1–23

    CAS  Article  Google Scholar 

  37. Pikin DA, Gurginkel II, Oraevskii VN (1998) Effect of geomagnetic disturbances on the blood coagulation system in patients with ischemic heart disease and prospects for correction medication. [in Russian]. Biofizika 43(4):617–622

    CAS  Google Scholar 

  38. Rapoport SI, Boldypakova TD, Malinovskaia NK, Oraevskiĭ VN, Meshcheriakova SA, Breus TK, Sosnovskiĭ AM (1998) Magnetic storms as a stress factor. [in Russian]. Biofizika 43(4):632–639

    CAS  Google Scholar 

  39. Robeva R, Kirilov G, Tomova A, Kumanov P (2008) Melatonin-insulin interaction in patients with metabolic syndrome. J Pineal Res 44:52–56

    CAS  Google Scholar 

  40. Rodriquez-Taboada ER, Sierra-Figueredo P, Figueredo SS (2004) Geomagnetic activity related to acute myocardial infarctions: relationship in a reduced population and time interval. Geofis Int 43(2):265–269

    Google Scholar 

  41. Rycroft MJ, Nicoll KA, Aplin KL, Harrison G (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Sol Terr Phys 90:198–211

    Article  Google Scholar 

  42. Sharma S, Singh H, Ahmad N, Mishra P, Tiwari A (2015) The role of melatonin in diabetes: therapeutic implications. Arch Endocrinol Metam 59(5):391–399

    Article  Google Scholar 

  43. Singer HJ, Russell CT, Kivelson MG, Greenstadt EW, Olson JV (1977) Evidence for the control of pc 3,4 magnetic pulsations by the solar wind velocity. Geophys Res Lett 4(9):377–379

    Article  Google Scholar 

  44. Sparsø T, Bonnefond A, Andersson A, Bouatia-Naji N, Holmkvist J, Wegner L, et al. (2009) G-allele of intronic rs10830963 in MTNR1B confers increased risk of impaired fasting glycemia and type 2 diabetes through an impaired glucose-stimulated insulin release studies involving 19,605 Europeans. Diabetes 58:1450–1456

    Article  Google Scholar 

  45. Staiger H, Machicao F, Silke A, Schäfer SA, Kirchhoff K, Kantartzis K, et al. (2008) Polymorphisms within the novel type 2 diabetes risk locus MTNR1B determine b-cell function. PLoS One 3(12):e3962. doi:10.1371/journal.pone.0003962

    Article  Google Scholar 

  46. Stoupel E, Abramson E, Drungiliene D, Martinkėnas A, Sulkes J, Zhemaityte D (2002) Klaipėda cardiovascular emergency aid services correlate with 10 Cosmo-physical parameters by time of occurrence. J Clin Bas Card 5(3):225–227

    Google Scholar 

  47. Turker Y, Aslantas Y, Aydin Y (2013) Heart rate variability and heart rate recovery in patients with type 1 diabetes mellitus. Acta Cardiol 68(2):145–150

    Google Scholar 

  48. Thygesen K, Alpert JS, White HD, Joint ESC/ACCF/AHA/WHF Task Force for the Redefinition of Myocardial Infarction (2007) Universal definition of myocardial infarction. Eur Heart J 28:2525–2538

    Article  Google Scholar 

  49. Tinsley BA (2000) Influence of solar wind on the global electric circuit, and inferred effects on cloud microphysics, temperature and dynamics in the troposphere. Space Sci Rev 94:231–258

    CAS  Article  Google Scholar 

  50. Uchiyama T, Nakayama S (2013) Magnetic sensors using amorphous metal materials: detection of premature ventricular magnetic waves. Phys Rep 1(2):e00030

    Google Scholar 

  51. Vencloviene J, Babarskiene R, Slapikas R (2013) The association between solar particle events, geomagnetic storms, and hospital admissions for myocardial infarction. Nat Hazards 65:1–12

    Article  Google Scholar 

  52. Villoresi G, Breus TK, Dorman LI, Iuchi N, Rapoport SI (1995) Effect of interplanetary and geomagnetic disturbances on the increase in number of clinically serious medical pathologies (myocardial infarct and stroke). [in Russian]. Biofizika 40(5):983–993

    CAS  Google Scholar 

  53. Voiculescu M, Usoskin I, Condurache-Bota S (2013) Clouds blown by the solar wind. Environ Res Lett 8:045032. doi:10.1088/1748-9326/8/4/045032

    Article  Google Scholar 

  54. Watanabe Y, Cornélissen G, Halberg F, Otsuka K, Ohkawa SI (2001) Associations by signatures and coherences between the human circulation and helio- and geomagnetic activity. Biomed Pharmacother 55(Suppl 1):76–83

    Google Scholar 

  55. Weydahl A, Sothern RB, Cornelissen G, Wetterburg L (2001) Geomagnetic activity influences the melatonin secretion at 70 degrees. Biomed Pharmacother 55(1):57–62

    Google Scholar 

  56. Yakovchouk OS, Veselovsky IS, Mursula K (2009) Statistical properties of the most powerful solar and heliospheric disturbance. Adv Space Res 43(4):634–640

    CAS  Article  Google Scholar 

  57. Zenchenko TA (2011) Solar wind density variations and the development of heliobiological effects during magnetic storms. Atmos Oceanic Phys 47(7):795–804

    Article  Google Scholar 

  58. Zenchenko T, Poskotinova LV, Rekhtina AG, Zaslavskaya RM (2010) Relation between microcirculation parameters and Pc3 geomagnetic pulsations. Biophysics 55(4):646–651

    Article  Google Scholar 

Download references

Acknowledgments

We acknowledge the contribution of Kaunas University of Medicine (currently Lithuanian University of Health Sciences) clinic of Cardiology in registering cardiovascular emergency admissions and in forming the computer database.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jone Vencloviene.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vencloviene, J., Babarskiene, R.M. & Kiznys, D. A possible association between space weather conditions and the risk of acute coronary syndrome in patients with diabetes and the metabolic syndrome. Int J Biometeorol 61, 159–167 (2017). https://doi.org/10.1007/s00484-016-1200-5

Download citation

Keywords

  • Geomagnetic storms
  • High-speed solar wind
  • Solar proton events
  • Acute coronary syndromes
  • Diabetes mellitus