Resources of dark skies in German climatic health resorts

Abstract

Illumination of nocturnal environments is increasing steadily worldwide. While there are some benefits for mankind, light at night affects animals, plants, and human health by blurring the natural distinction between day and night. International regulations exist to protect the environment for the maintenance of human health but nocturnal darkness is not considered. In Germany, cities and communities labeled as Climatic Health Resorts provide for high standards in air quality. However, their degree of nocturnal darkness is unexplored so far. In our study, we examined the degree of nocturnal darkness in German Climatic Health Resorts by two datasets based on georeferenced remote sensing data. The majority of Climatic Health Resorts (93.1 %) are able to offer a relative respite (≥ 20 mag/arcsec2) from a degraded nocturnal environment, while only 3.4 % are able to offer a dark, if by no means pristine, night environment (≥ 21 mag/arcsec2). Climatic Health Resorts emit less light as well as are less affected by night sky brightness compared to the average of non-classified communities. In combination with daytime requirements, the resorts provide conditions for a more distinct day-and-night-cycle than non-classified communities.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Administrative Borders 1:250,000 - VG250-EW (status as of 31st of December 2011) (2012) Federal Agency for Cartography and Geodesy Germany. http://www.geodatenzentrum.de/geodaten/gdz_rahmen.gdz_div?gdz_spr=deu&gdz_akt_zeile=5&gdz_anz_zeile=1&gdz_unt_zeile=15&gdz_user_id=0. Accessed August 8, 2013

  2. Amelung W (1986) Zur geschichte der Bäder- und Klimaheilkunde. In: Amelung W, Hildebrandt G (eds) Balneologie und medizinische Klimatologie, Springer, vol 3. Berlin, Heidelberg, pp. 197–202

    Google Scholar 

  3. Amelung W, Becker F, Jungmann H (1986) Medizinische Klimatologie. In: Amelung W, Hildebrandt G (eds) Balneologie und medizinische Klimatologie, Springer, vol 3. Berlin, Heidelberg, pp. 1–89

    Google Scholar 

  4. Anderson SJ, Tuttle BT, Powell RL, Sutton PC (2010) Characterizing relationships between population density and nighttime imagery for Denver, Colorado: issues of scale and representation. Int J Remote Sens 31:5733–5746. doi:10.1080/01431161.2010.496798

    Article  Google Scholar 

  5. Angel S, Parent J, Civco DL, Blei A, Potere D (2011) The dimensions of global urban expansion: estimates and projections for all countries, 2000–2050. Prog Plan 75:53–107. doi:10.1016/j.progress.2011.04.001

    Article  Google Scholar 

  6. Bauer S, Wagner S, Burch J, Bayakly R, Vena J (2013) A case-referent study: light at night and breast cancer risk in Georgia. Int J Health Geogr 12:10. doi:10.1186/1476-072X-12-23

    Article  Google Scholar 

  7. Bennie J, Davies TW, Duffy JP, Inger R, Gaston KJ (2014) Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci Report 4:6. doi:10.1038/srep03789

    Article  Google Scholar 

  8. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295:1070–1073. doi:10.1126/science.1067262

    CAS  Article  Google Scholar 

  9. Brainard GC, Hanifin JP, Greeson JM, Byrne B, Glickman G, Gerner E, Rollag MD (2001) Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor. J Neurosci 21:6405–6412

    CAS  Google Scholar 

  10. Brainard GC et al. (2008) Sensitivity of the human circadian system to short-wavelength (420-nm) light. J Biol Rhythm 23:379–386. doi:10.1177/0748730408323089

    Article  Google Scholar 

  11. Bray MS, Young ME (2012) Chronobiological effects on obesity. Curr Obes Rep 1:9–15. doi:10.1007/s13679-011-0005-4

    Article  Google Scholar 

  12. Cho YM, Ryu S-H, Lee BR, Kim KH, Lee E, Choi J (2015) Effects of artificial light at night on human health: a literature review of observational and experimental studies applied to exposure assessment. Chronobiol Int 32:1294–1310. doi:10.3109/07420528.2015.1073158

    Article  Google Scholar 

  13. Cinzano P, Falchi F, Elvidge CD (2001) The first world atlas of the artificial night sky brightness. Mon Not R Astron Soc 328:689–707. doi:10.1046/j.1365-8711.2001.04882.x

    Article  Google Scholar 

  14. Claßen T, Kistemann T, Diekkrüger B (2003) Naturschutz und Gesundheitsschutz—dargestellt am Beispiel des Trinkwasserschutzes. Bonn

  15. Dauchy RT et al. (2014) Circadian and melatonin disruption by exposure to light at night drives intrinsic resistance to tamoxifen therapy in breast cancer. Cancer Res 74:4099–4110. doi:10.1158/0008-5472.can-13-3156

    CAS  Article  Google Scholar 

  16. DBV, DFVV (1968) Begriffsbestimmungen für Kurorte, Erholungsorte und Heilbrunnen. vol 1.

  17. DBV, DFVV (1972) Begriffsbestimmungen für Kurorte, Erholungsorte und Heilbrunnen. vol 1.

  18. DBV, DFVV (1979) Begriffsbestimmungen für Kurorte, Erholungsorte und Heilbrunnen. vol 1, 8 edn.,

  19. DBV, DFVV (1987) Begriffsbestimmungen für Kurorte, Erholungsorte und Heilbrunnen. vol 1, 9 edn.,

  20. DBV, DFVV (1991) Begriffsbestimmungen für Kurorte, Erholungsorte und Heilbrunnen. vol 1, 10 edn.,

  21. DHV, DTV (2005) Begriffsbestimmungen/Qualitätsstandards für Heilbäder und Kurorte, Luftkurorte, Erholungsorte—einschließlich der Prädikatisierungsvoraussetzungen—sowie für Heilbrunnen und Heilquellen. vol 1, 12 edn., Berlin

  22. Elvidge CD, Baugh KE, Kihn EA, Kroehl HW, Davis ER, Davis CW (1997) Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption. Int J Remote Sens 18:1373–1379. doi:10.1080/014311697218485

    Article  Google Scholar 

  23. Elvidge CD, Baugh KE, Zhizhin M, Hsu FC (2013) Why VIIRS data are superior to DMSP for mapping nighttime lights. In: 30th Asia-Pacific advanced network, University of Hawai’i – Manoa, 2013. pp 62–69. doi:10.7125/APAN.35.7

  24. Erren TC, Reiter RJ (2009) Light hygiene: time to make preventive use of insights—old and new—into the nexus of the drug light, melatonin, clocks, chronodisruption and public health. Med Hypotheses 73. doi:10.1016/j.mehy.2009.06.003

  25. Falchi F, Cinzano P, Elvidge CD, Keith DM, Haim A (2011) Limiting the impact of light pollution on human health, environment and stellar visibility. J Environ Manag 92:2714–2722. doi:10.1016/j.jenvman.2011.06.029

    CAS  Article  Google Scholar 

  26. Fonken LK, Aubrecht TG, Meléndez-Fernández OH, Weil ZM, Nelson RJ (2013) Dim light at night disrupts molecular circadian rhythms and increases body weight. J Biol Rhythm 28:262–271. doi:10.1177/0748730413493862

    Article  Google Scholar 

  27. Fonken LK, Finy MS, Walton JC, Weil ZM, Workman JL, Ross J, Nelson RJ (2009) Influence of light at night on murine anxiety- and depressive-like responses. Behav Brain Res 205:349–354. doi:10.1016/j.bbr.2009.07.001

    Article  Google Scholar 

  28. Garstang RH (1986) Model for artificial night-sky illumination. Publ Astron Soc Pac 98:364–375

    CAS  Article  Google Scholar 

  29. Gaston KJ, Bennie J, Davies TW, Hopkins J (2013) The ecological impacts of nighttime light pollution: a mechanistic appraisal. Biol Rev 88:912–927. doi:10.1111/brv.12036

    Article  Google Scholar 

  30. Haim A, Portnov BA (2013) Light pollution as a new risk factor for human breast and prostate cancer. Springer, Dordrecht. doi:10.1007/978-94-007-6220-6

    Google Scholar 

  31. Haim A, Zubidat AE (2015) Artificial light at night: melatonin as a mediator between the environment and epigenome. Philos Trans R Soc B 370:7. doi:10.1098/rstb.2014.0121

    Article  Google Scholar 

  32. He C, Anand ST, Ebell MH, Vena JE, Robb SW (2015) Circadian disrupting exposures and breast cancer risk: a meta-analysis. Int Arch Occup Environ Health 88:533–547. doi:10.1007/s00420-014-0986-x

    Article  Google Scholar 

  33. Hill SM et al. (2015) Melatonin: an inhibitor of breast cancer. Endocr-Relat Cancer 22:R183–R204. doi:10.1530/erc-15-0030

    CAS  Article  Google Scholar 

  34. Hölker F et al. (2010a) The dark side of light: a transdisciplinary research agenda for light pollution policy. Ecol Soc 15:8

    Google Scholar 

  35. Hölker F, Wolter C, Perkin EK, Tockner K (2010b) Light pollution as a biodiversity threat. Trends Ecol Evol 25:681–682. doi:10.1016/j.tree.2010.09.007

    Article  Google Scholar 

  36. Holzman DC (2010) What’s in a color? The unique human health effects of blue light. Environ Health Perspect 118:A22–A27. doi:10.1289/ehp.118-a22

    Article  Google Scholar 

  37. Hüfner G (1992) Die deutschen Bäderverbände 1892–1992. Chronik der Verbandsarbeit, Flöttmann, Gütersloh

    Google Scholar 

  38. Hurley S, Goldberg D, Nelson D, Hertz A, Horn-Ross PL, Bernstein L, Reynolds P (2014) Light at night and breast cancer risk among California teachers. Epidemiology 25:697–706. doi:10.1097/EDE.0000000000000137

    Article  Google Scholar 

  39. IDA (2013a) Dark Sky Park Program Criteria. Tucson Arizona

  40. IDA (2013b) Dark Sky Reserve Program Criteria. Tucson Arizona

  41. IDA (2014) International Dark Sky Association. http://www.darksky.org/. Accessed 27 Feb 2015

  42. Kloog I, Haim A, Stevens RG, Barchana M, Portnov BA (2008) Light at night co-distributes with incident breast but not lung cancer in the female population in Israel. Chronobiol Int 25:65–81. doi:10.1080/07420520801921572

    Article  Google Scholar 

  43. Kurvers RHJM, Hölker F (2015) Bright nights and social interactions: a neglected issue. Behav Ecol 26:334–339. doi:10.1093/beheco/aru223

    Article  Google Scholar 

  44. Kyba CCM, Garz S, Kuechly HU, de Miguel AS, Zamorano J, Fischer J, Hölker F (2015a) High-resolution imagery of earth at night: new sources, opportunities and challenges. Remote Sens 7:1–23. doi:10.3390/rs70100001

    Article  Google Scholar 

  45. Kyba CCM, Hänel A, Hölker F (2014) Redefining efficiency for outdoor lighting. Energy Environ Sci 7:1806–1809. doi:10.1039/c4ee00566j

    Article  Google Scholar 

  46. Kyba CCM, Hölker F (2012) Window illumination should be expected to poorly correlate with satellite brightness measurements. Chronobiol Int 29:87–88. doi:10.3109/07420528.2011.630294

    Article  Google Scholar 

  47. Kyba CCM, Hölker F (2013) Do artificially illuminated skies affect biodiversity in nocturnal landscapes? Landsc Ecol 28:1637–1640. doi:10.1007/s10980-013-9936-3

    Article  Google Scholar 

  48. Kyba CCM, Ruhtz T, Fischer J, Hölker F (2011) Cloud coverage acts as an amplifier for ecological light pollution in urban ecosystems. PLoS One 6:9. doi:10.1371/journal.pone.0017307

    Article  Google Scholar 

  49. Kyba CCM et al. (2015b) Worldwide variations in artificial skyglow. Sci Report 5:6. doi:10.1038/srep08409

    Google Scholar 

  50. Kyba CCM et al. (2013) Citizen science provides valuable data for monitoring global night sky luminance. Sci Report 3:6. doi:10.1038/srep01835

    Article  Google Scholar 

  51. McFadden E, Jones ME, Schoemaker MJ, Ashworth A, Swerdlow AJ (2014) The relationship between obesity and exposure to light at night: cross-sectional analyses of over 100,000 women in the breakthrough generations study. Am J Epidemiol 180:245–250. doi:10.1093/aje/kwu117

    Article  Google Scholar 

  52. Menegaux F et al. (2013) Night work and breast cancer: a population-based case–control study in France (the CECILE study). Int J Cancer 132:924–931. doi:10.1002/ijc.27669

    CAS  Article  Google Scholar 

  53. Obayashi K, Saeki K, Iwamoto J, Ikada Y, Kurumatani N (2013) Exposure to light at night and risk of depression in the elderly. J Affect Disord 151:331–336. doi:10.1016/j.jad.2013.06.018

    Article  Google Scholar 

  54. Papantoniou K et al. (2015) Night shift work, chronotype and prostate cancer risk in the MCC-Spain case-control study. Int J Cancer 137:1147–1157. doi:10.1002/ijc.29400

    CAS  Article  Google Scholar 

  55. Perkin EK, Hölker F, Richardson JS, Sadler JP, Wolter C, Tockner K (2011) The influence of artificial light on stream and riparian ecosystems: questions, challenges, and perspectives. Ecosphere 2:16. doi:10.1890/ES11-00241.1

    Article  Google Scholar 

  56. Rea MS, Brons JA, Figueiro MG (2011) Measurements of light at night (LAN) for a sample of female school teachers. Chronobiol Int 28:673–680. doi:10.3109/07420528.2011.602198

    Article  Google Scholar 

  57. Rea MS, Brons JA, Figueiro MG (2012) Reply to: window illumination should be expected to poorly correlate with satellite brightness measurements. Chronobiol Int 29:88–90. doi:10.3109/07420528.2011.630294

    Article  Google Scholar 

  58. Reiter RJ, Tan D-X, Sanchez-Barcelo E, Mediavilla MD, Gitto E, Korkmaz A (2011) Circadian mechanisms in the regulation of melatonin synthesis: disruption with light at night and the pathophysiological consequences. J Exp Integrative Med 1:13–22. doi:10.5455/jeim.101210.ir.001

    Article  Google Scholar 

  59. Rich C, Longcore T (2006) Ecological consequences of artificial night lighting. Island Press, Washington, DC

    Google Scholar 

  60. Rybnikova N, Haim A, Portnov BA (2015) Artificial light at night (ALAN) and breast cancer incidence worldwide: a revisit of earlier findings with analysis of current trends. Chronobiol Int 32:757–773. doi:10.3109/07420528.2015.1043369

    Article  Google Scholar 

  61. Schroer S, Hölker F (2017) Impact of lighting on flora and fauna. In: Sun C-C, Zissis G, Ma R (eds) Karlicek R. Springer, Handbook of Advanced Lighting Technology Reference, pp. 1–33

    Google Scholar 

  62. Spivey A (2011) The mixed blessing of phosphor-based white LEDs. Environ Health Perspect 119:A472–A473. doi:10.1289/ehp.119-a472

    Article  Google Scholar 

  63. Starlight Foundation (s. a.-a) Certification StarLight—tourist destinations procedure. https://propuesta10112014.wordpress.com/certificationes-starlight/. Accessed 31 March 2015

  64. Starlight Foundation (s. a.-b) StarLight Destinos Turísticos. Medidas e instrumentacíon. https://propuesta10112014.wordpress.com/certificaciones-starlight/. Accessed 31 March 2015

  65. Starlight Foundation (s. a.-c) StarLight Reservas. Parámetros relativos a la calidad astronómica del cielo nocturno. https://propuesta10112014.wordpress.com/certificaciones-starlight/. Accessed 31 March 2015

  66. Stevens RG, Brainard GC, Blask DE, Lockley SW, Motta ME (2014) Breast cancer and circadian disruption from electric lighting in the modern world. CA Cancer J Clin 64:207–218. doi:10.3322/caac.21218

    Article  Google Scholar 

  67. Stevens RG, Zhu Y (2015) Electric light, particularly at night, disrupts human circadian rhythmicity: is that a problem? Philos Trans R Soc B 370:9. doi:10.1098/rstb.2014.0120

    Article  Google Scholar 

  68. Straif K et al. (2007) Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 8:1065–1066. doi:10.1016/S1470-2045(07)70373-X

    Article  Google Scholar 

  69. Sutton PC, Roberts D, Elvidge CD, Meij H (1997) A comparison of nighttime satellite imagery and population density for the continental United States. Photogramm Eng Remote Sens 63:1303–1313

    Google Scholar 

  70. Tollefson J (2014) Islands of light. Nature 507:154–156

    CAS  Article  Google Scholar 

  71. United Nations (1992) Agenda 21, Rio de Janeiro

  72. United Nations (2014) World Urbanization Prospects. The 2014 Revision. Highlights The 2014 Revision edn. United Nations, New York

  73. VIIRS Nighttime Lights - 2012 (2013) National Geophysical Data Center. http://ngdc.noaa.gov/eog/viirs/download_viirs_ntl.html. Accessed August 8, 2013

  74. Welch R (1980) Monitoring urban population and energy utilization patterns from satellite data. Remote Sens Environ 9:1–9

    Article  Google Scholar 

  75. Xiang S et al. (2015) Doxorubicin resistance in breast cancer is driven by light at night-induced disruption of the circadian melatonin signal. J Pineal Res 59:60–69. doi:10.1111/jpi.12239

    CAS  Article  Google Scholar 

Download references

Acknowledgments

The researchers were supported by grants from the German Federal Ministry of Education and Research (BMBF-033L038A) and from the Berlin Senate Department for Economics, Technology, and Research (Lichtimmissionen im öffentlichen Raum). The EU COST Action ES1204 (Loss of the Night Network) enabled the international cooperation.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Katharina M. A. Gabriel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gabriel, K.M.A., Kuechly, H.U., Falchi, F. et al. Resources of dark skies in German climatic health resorts. Int J Biometeorol 61, 11–22 (2017). https://doi.org/10.1007/s00484-016-1187-y

Download citation

Keywords

  • Light pollution
  • Health resorts
  • Germany
  • Regulation
  • Remote sensing
  • Circadian rhythm