Skip to main content
Log in

Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The objective of this paper was to perform a microclimate evaluation and determine the indexes of thermal comfort indexes, in sun and shade, in integrated crop-livestock-forest systems with different arrangements of eucalyptus and native trees, in the Brazilian Midwest. The experiment was conducted at Embrapa Beef Cattle in Campo Grande, state of Mato Grosso do Sul, Brazil, from July to September 2013. The evaluations were conducted on four consecutive days, from 8:00 a.m. to 5:00 p.m., local time (GMT −4:00), with 1 hour intervals, recording the microclimate parameters: air temperature (°C), black globe temperature (°C), wet bulb temperature (°C), relative humidity (%), and wind speed (m.s−1), for the subsequent calculation of the Temperature and Humidity Index, the Black Globe Temperature and Humidity Index, and the Radiant Thermal Load. The largest changes in microclimate parameters were found in the full sun, between 12:00 p.m. and 1:00 p.m., in less dense eucalyptus system, followed by the scattered native trees system, resulting in a maximum Temperature and Humidity Index of 81, Black Globe Temperature and Humidity Index of 88 and Radiant Thermal Load of 794 W m−2. Therefore, it is observed that with the presence of trees in pastures were possible reductions of up to 3.7 % in Temperature and Humidity Index, 10.2 % in the Black Globe Temperature and Humidity Index, and 28.3 % of the Radiant Thermal Load in the shade. Thus, one can conclude that the presence of trees and their arrangement in the systems provide better microclimate conditions and animal thermal comfort in pastures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ablas DS, Titto EAL, Pereira AMF, Titto CG, Leme TMC (2007) Comportamento de bubalinos a pasto frente a disponibilidade de sombra e água Para imersão. Cienc Anim Bras 8:167–175

    Google Scholar 

  • Abreu LV, Labaki LC (2010) Conforto térmico propiciado por algumas espécies arbóreas: avaliação do raio de influência através de diferentes índices de conforto. Rev ANTAC 10:103–117

    Google Scholar 

  • Aggarwal A, Upadhyay R (2013) Heat stress and animal productivity. Springer, London doi:10.1007/978-81-322-0879-2_1.

  • Baêta FC (1985) Responses of lactating dairy cows to the combined effects of tempertature, humidity and wind velocity in the warm season. 218 f. Thesis (Doctorate in Ambience Animal)-Agricultural Engeneering Department, University of Missouri, Columbia.

  • Baêta FC, Souza CF (2010) Ambiência em edificações rurais: conforto animal, 2nd edn. UFV, Viçosa

    Google Scholar 

  • Baliscei MA, Barbosa OR, Souza W, Costa MAT, Fkutzmann, Queiroz EO (2013) Microclimate without shade and silvopastoral system during summer and winter. Acta Scient Anim Sci. doi:10.4025/actascianimsci.v35i1.15155

    Google Scholar 

  • Broom DM, Galindo FA, Murgueitio E (2013) Sustainable, efficient livestock production with high biodiversity and good welfare for animals. Proc Biol Sci 280:2013–2025

    Google Scholar 

  • Buffington DE, Collazo Arocho A, Canton GH, Pitt D (1981) Black globe humidity index (BGHI) as a comfort equation for dairy cows. Trans ASAE 24:711–714. doi:10.13031/2013.34325

    Article  Google Scholar 

  • Esmay ML (1979) Principles of animal environment. AviPublishing, Porto Oeste

    Google Scholar 

  • Ferreira F, Pires MFA, Martinez ML, Coelho SG, Carvalho AU, Ferreira PM, Facury Filho EJ, Campos WE (2006) Parâmetros fisiológicos de bovinos cruzados submetidos ao estresse calórico. Arq Bras Med Vet Zootec 58:732–773. doi:10.1590/S0102-09352006000500005

    Article  Google Scholar 

  • Ferreira RA, Estrada LHC, Thiébaut JTL, Granados LBC, Souza Júnior VR (2011a) Avaliação do comportamento de ovinos Santa Inês em sistema silvipastoril no norte fluminense. Cienc Agrotec 35:399–403. doi:10.1590/S1413-70542011000200023

    Article  Google Scholar 

  • Ferreira LCB, Machado Filho LCP, Hoetzel MJ, Labarrêre JG (2011b) O efeito de diferentes disponibilidades de sombreamento na dispersão de fezes dos bovinos nas pastagens. Rev Bras Agroec 6:137–146

    Google Scholar 

  • Guiselini C, Silva IJO, Piedade SM (1999) Avaliação da qualidade do sombreamento arbóreo no meio rural. Rev Bras Eng Agric Ambiental 3:380–384

    Article  Google Scholar 

  • Gurgel EM, Seraphim OJ, Silva IJO (2012) Métodos de avaliação bioclimática da qualidade da sombra de árvores visando ao conforto térmico animal. Rev Energ Agric 2:20–34

    Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística (2015). Estatística de produção pecuária. p 80

  • Köppen W (1948) Climatologia: con um estúdio de lós climas de la tierra. Fondo de Cultura Econômica, México, p. p 479

    Google Scholar 

  • Mader TL, Johnson LJ, Gaughan JB (2010) A comprehensive index for assessing environmental stress in animals. J Anim Sci 88:2153–2165. doi:10.2527/jas.2009-2586

    Article  CAS  Google Scholar 

  • Moore DA, Duprau JL, Wenz JR (2012) Short communication: effects of dairy calf hutch elevation on heat reduction, carbon dioxide concentration, air circulation, and respiratory rates. J Dairy Sci 95:4050–4054

    Article  CAS  Google Scholar 

  • Morais DAEF, Maia ASC, Silva RG, Vasconcelos AM, Lima PO, Guilhermino MM (2008) Variação anual de hormônios tireoideanos e características termorreguladoras de vacas leiteiras em ambiente quente. R Bras Zootec 37(3):538–545

    Article  Google Scholar 

  • Navarini FC, Klosowski ES, Campos AT, Teixeira RA, Almeida CP (2009) Conforto térmico de bovinos da raça nelore a pasto sob diferentes condições de sombreamento e a pleno sol. Eng Agric 29:508–517

    Google Scholar 

  • SAS INSTITUTE INC. STATISTICAL (2002) Analysis system user’s guide. Version 9.0. Statistical Analysis System Institute, Cary, p. 1025

    Google Scholar 

  • Schumacher MV, Poggiani F (1993) Caracterização microclimática no interior dos talhões de Eucalyptus camaldulensis Dehnh, Eucalyptus grandis hill ex maiden e Eucalyptus torelliana F. Muell, localizados em Anhembi, SP. Rev Cienc Florest 3:9–20

    Google Scholar 

  • Schütz KE, Rogers AR, Poulouin YA, Cox NR, Tucker CB (2010) The amount of shade influences the behavior and physiology of dairy cattle. J Dairy Sci 93:125–133. doi:10.3168/jds.2009-2416

    Article  Google Scholar 

  • Silva RG (2000) Introdução à bioclimatologia animal. Nobel, São Paulo 450

    Google Scholar 

  • Silva RG (2006) Predição da configuração de sombra de árvores em pastagens Para bovinos. Eng Agric 26:268–281

    Google Scholar 

  • Silva RG, Maia ASC (2013) The environment. In: Silva RG, Maia ASC (ed) Principles of animal biometeorology. Springer, London, pp 1–37. doi:10.1007/978-94-007-5733-2.

  • Silva LC, Lucas FT, Borges BMMN, Silva WJ (2010) Influência da radiação fotossinteticamente ativa no crescimento e desenvolvimento de forrageiras tropicais. FAZU Rev 7:63–67

    Google Scholar 

  • Soares AB, Sartor LR, Adami PF, Varela AC, Fonseca L, Mezzalira JC (2009) Influência da luminosidade no comportamento de onze espécies forrageiras perenes de verão. Rev Bras Zootec 38:443–451

    Article  Google Scholar 

  • Souza CF, Tinôco IFF, Baêta FC, Ferreira WPM, Silva RS (2002) Avaliação de materiais alternativos Para confecção do termômetro de globo. Ciênc Agrotec 26:157–164

    Google Scholar 

  • Souza BB, Silva RMN, Marinho ML, Silva GA, Silva EMN, Souza AP (2007) Parâmetros fisiológicos e índice de tolerância ao calor de bovinos da raça Sindi no semi-árido Paraibano. Ciênc Agrotec 31:883–888

    Article  Google Scholar 

  • Souza BB, Silva IJO, Mellace EM, Santos RFS, Zotti CA, Garcia PR (2010) Avaliação do ambiente físico promovido pelo sombreamento sobre o processo termorregulatório em novilhas leiteiras. ACSA 6:59–65

    Google Scholar 

  • Thom EC (1958) Cooling degrees: day air-conditioning, heating and ventilating. Trans Am Soc Heat, Refrig Air Cond Eng 55:65–72

    Google Scholar 

  • Tripon I, Cziszter LT, Bura M, Sossidou EM (2014) Effects of seasonal and climate variations on calves thermal comfort and behavior. Int J Biometeorol 58:1471–1478. doi:10.1007/s00484-013-0749-5

    Article  Google Scholar 

  • Trumbo BA, Wise LM, Hudy M (2012) Influence of protective shielding devices on recorded air temperature accuracy for a rugged outdoor thermal sensor used in climate change modeling. J Nat Env Sci 3:42–50

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nivaldo Karvatte Jr..

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karvatte, N., Klosowski, E.S., de Almeida, R.G. et al. Shading effect on microclimate and thermal comfort indexes in integrated crop-livestock-forest systems in the Brazilian Midwest. Int J Biometeorol 60, 1933–1941 (2016). https://doi.org/10.1007/s00484-016-1180-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1180-5

Keywords

Navigation