International Journal of Biometeorology

, Volume 60, Issue 11, pp 1801–1805 | Cite as

Implementation of human thermal comfort information in Köppen-Geiger climate classification—the example of China

Short Communication


Köppen-Geiger climate classification (KGC) is accepted and applied worldwide. The climatic parameters utilised in KGC, however, cannot indicate human thermal comfort (HTC) conditions or air humidity (AH) conditions directly, because they are originally based on climatic effects on vegetation, instead of that on human body directly. In addition, HTC is driven by meteorological parameters together. Thus, the objective of this study is to preliminarily implement the HTC information and the AH information in KGC. Physiologically equivalent temperature (PET) has been chosen as the HTC index, and vapour pressure (VP) is for the quantification of AH conditions. In this preliminary study, 12 Chinese cities in total have been taken into account as the assumed representatives of 11 climate types. Basic meteorological data of each city with 3-h resolution in 2000–2012 has been analysed. RayMan model has been applied to calculate PET within the same time period. Each climate type has been described by frequencies of PET and frequencies of VP. For example, the Aw (Sanya) has the most frequent occurrence of thermally stressful conditions compared to other climate types: PET in 22 % points in time of the year was above 35 °C. The driest AH conditions existed in Dwc (Lhasa) and Dfb (Urumqi) with VP rarely above 18 hPa in the wettest month. Implementation of the HTC information and the additional AH information in each climate type of KGC can be helpful for the topics of human health, energy consumption, tourism, as well as urban planning.


Human thermal comfort Air humidity Köppen-Geiger climate classification Physiologically equivalent temperature Vapour pressure China 



This study is sponsored by the China Scholarship Council (No. 201206990020).


  1. ASHRAE (2001) ASHRAE handbook: fundamentals. American Society of Heating, Refrigerating and Air Conditioning Engineers, AtlantaGoogle Scholar
  2. de Dear R, Brager GS (2001) The adaptive model of thermal comfort and energy conservation in the built environment. Int J Biometeorol 45(2):100–108CrossRefGoogle Scholar
  3. Fanger PO (1973) Assessment of man’s thermal comfort in practice. Br J Ind Med 30(4):313–324Google Scholar
  4. Herrmann J, Matzarakis A (2012) Mean radiant temperature in idealised urban canyons—examples from Freiburg, Germany. Int J Biometeorol 56(1):199–203CrossRefGoogle Scholar
  5. Höppe P (1999) The physiological equivalent temperature—a universal index for the biometeorological assessment of the thermal environment. Int J Biometeorol 43(2):71–75CrossRefGoogle Scholar
  6. Hwang R-L, Lin T-P, Matzarakis A (2011) Seasonal effects of urban street shading on long-term outdoor thermal comfort. Build Environ 46(4):863–870CrossRefGoogle Scholar
  7. Hyatt OM, Lemke B, Kjellstrom T (2010) Regional maps of occupational heat exposure: past, present, and potential future. Global Health Action 3. doi: 10.3402/gha.v3i0.5715
  8. Köppen W (1884) Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet (The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world). Meteorol Z 1:215–226(translated and edited by Volken, E. and S. Brönnimann (2011) Meteorologische Zeitschrift 20(3), 351–360)Google Scholar
  9. Kottek M, Grieser J, Beck C, Rudolf B, Rubel F (2006) World map of the Köppen-Geiger climate classification updated. Meteorol Z 15(3):259–263CrossRefGoogle Scholar
  10. Krüger E, Minella F, Matzarakis A (2014) Comparison of different methods of estimating the mean radiant temperature in outdoor thermal comfort studies. Int J Biometeorol 58(8):1727–1737CrossRefGoogle Scholar
  11. Li R, Chi X (2014) Thermal comfort and tourism climate changes in the Qinghai–Tibet Plateau in the last 50 years. Theor Appl Climatol 117(3–4):613–624CrossRefGoogle Scholar
  12. Lin TP, Matzarakis A (2008) Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. Int J Biometeorol 52(4):281–290CrossRefGoogle Scholar
  13. Lin T-P, Matzarakis A (2011) Tourism climate information based on human thermal perception in Taiwan and Eastern China. Tour Manag 32(3):492–500CrossRefGoogle Scholar
  14. Lin TP, Matzarakis A, Hwang R-L (2010) Shading effect on long-term outdoor thermal comfort. Build Environ 45(1):213–221CrossRefGoogle Scholar
  15. Lin T-P, Tsai K-T, Hwang R-L, Matzarakis A (2012) Quantification of the effect of thermal indices and sky view factor on park attendance. Landsc Urban Plan 107(2):137–146CrossRefGoogle Scholar
  16. Matzarakis A (2007) Climate, thermal comfort and tourism. In: Amelung, B., Blazejczyk, K., Matzarakis, A., (eds.) Climate Change and Tourism: Assessment and Coping Strategies. 139–154Google Scholar
  17. Matzarakis A, Amelung B (2008) Physiological equivalent temperature as indicator for impacts of climate change on thermal comfort of humans. In: M. C. Thomson, R. Garcia-Herrera, M. Beniston (eds.), Seasonal Forecasts, Climatic Change and Human Health. Advances in Global Change Research 30, Springer-Sciences and Business Media, 161–172Google Scholar
  18. Matzarakis A, Mayer H (1996) Another kind of environmental stress: thermal stress. WHO Collaborating Centre for Air Quality Management and Air Pollution Control. Newsletters 18:7–10Google Scholar
  19. Matzarakis A, Mayer H, Iziomon MG (1999) Applications of a universal thermal index: physiological equivalent temperature. Int J Biometeorol 43(2):76–84CrossRefGoogle Scholar
  20. Matzarakis A, Rutz F, Mayer H (2007) Modelling radiation fluxes in simple and complex environments—application of the RayMan model. Int J Biometeorol 51(4):323–334CrossRefGoogle Scholar
  21. Matzarakis A, Rutz F, Mayer H (2010) Modelling radiation fluxes in simple and complex environments: basics of the RayMan model. Int J Biometeorol 54(2):131–139CrossRefGoogle Scholar
  22. Mayer H, Höppe P (1987) Thermal comfort of man in different urban environments. Theor Appl Climatol 38(1):43–49CrossRefGoogle Scholar
  23. Muthers S, Matzarakis A, Koch E (2010) Climate change and mortality in Vienna—a human biometeorological analysis based on regional climate modeling. Int J Environ Res Public Health 7(7):2965–2977CrossRefGoogle Scholar
  24. Nicol F (2004) Adaptive thermal comfort standards in the hot–humid tropics. Energy Build 36(7):628–637CrossRefGoogle Scholar
  25. Omonijo AG, Matzarakis A, Oguntoke O, Adeofun CO (2012) Effect of thermal environment on the temporal, spatial and seasonal occurrence of measles in Ondo state, Nigeria. Int J Biometeorol 56(5):873–885CrossRefGoogle Scholar
  26. Plumley HJ (1977) Design of outdoor urban spaces for thermal comfort. In: Heisler, Gordon M.; Herrington D, Lee P., eds. Proceedings of the conference on metropolitan physical environment; Gen. Tech. Rep. NE-25. Upper Darby, PA: U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station. 152–162Google Scholar
  27. Rijal HB, Tuohy P, Humphreys MA, Nicol JF, Samuel A, Clarke J (2007) Using results from field surveys to predict the effect of open windows on thermal comfort and energy use in buildings. Energy Build 39(7):823–836CrossRefGoogle Scholar
  28. Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19(2):135–141CrossRefGoogle Scholar
  29. Rubel F, Kottek M (2011) Comments on: “the thermal zones of the Earth” by Wladimir Köppen (1884). Meteorol Z 20(3):361–365CrossRefGoogle Scholar
  30. VDI (1998) VDI 3787, Part I: environmental meteorology, methods for the human biometeorological evaluation of climate and air quality for the urban and regional planning at regional level. Part I: climate. Beuth, Berlin, p. 29Google Scholar

Copyright information

© ISB 2016

Authors and Affiliations

  1. 1.Albert-Ludwigs-Universität FreiburgFreiburgGermany
  2. 2.Research Center Human Biometeorology, Deutscher WetterdienstFreiburgGermany

Personalised recommendations