Skip to main content

Advertisement

Log in

Response of deciduous trees spring phenology to recent and projected climate change in Central Lithuania

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The analysis of long-term time series of spring phenology for different deciduous trees species has shown that leaf unfolding for all the investigated species is the most sensitive to temperatures in March and April and illustrates that forcing temperature is the main driver of the advancement of leaf unfolding. Available chilling amount has increased by 22.5 % over the last 90 years, indicating that in the investigated geographical region there is no threat of chilling shortage. The projection of climatic parameters for Central Lithuania on the basis of three global circulation models has shown that under the optimistic climate change scenario (RCP 2.6) the mean temperature tends to increase by 1.28 °C and under the pessimistic scenario (RCP 8.5) by 5.03 °C until the end of the current century. Recently, different statistical models are used not only to analyze but also to project the changes in spring phenology. Our study has shown that when the data of long-term phenological observations are available, multiple regression models are suitable for the projection of the advancement of leaf unfolding under the changing climate. According to the RCP 8.5 scenario, the projected advancement in leaf unfolding for early-season species birch consists of almost 15 days as an average of all three used GSMs. Markedly less response to the projected far future (2071–2100), climate change is foreseen for other investigated climax species: −9 days for lime, 10 days for oak, and 11 days for maple.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahas R, Aasa A (2006) The effects of climate change on the phenology of selected Estonian plant, bird and fish populations. Int J Biometeorol 51:17–26

    Article  Google Scholar 

  • Almanac for Computers (1990) Nautical Almanac Office, Washington, DC (USA). US Government Printing Office, Washington, DC

    Google Scholar 

  • Berg P, Feldmann H, Panitz HJ (2012) Bias correction of high resolution regional climate model data. J Hydrol 448–449:80–92

    Article  Google Scholar 

  • Bertin RI (2008) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146. doi:10.3159/07-RP-035R.1

    Article  Google Scholar 

  • Blümel K, Chmielewski FM (2012) Shortcomings of classical phenological forcing models and a way to overcome them. Agric For Meteorol 164:10–19

    Article  Google Scholar 

  • Chmielewski FM, Rötzer T (2001) Response of tree phenology to climate change across Europe. Agric Meteorol 108:101–112

    Article  Google Scholar 

  • Chmielewski FM, Blümel K, Pálesová I (2012) Climate change and shifts in dormancy release for deciduous fruit crops in Germany. Clim Res 54:209–219. doi:10.3354/cr01115

    Article  Google Scholar 

  • Chuine I (2000) A unified model for budburst of trees. J Theor Biol 207:337–347

    Article  CAS  Google Scholar 

  • Chuine I, Cour P (1999) Climatic determinants of budburst seasonality in four temperate-zone tree species. New Phytol 143:339–349

    Article  Google Scholar 

  • Cleland EE, Chuine I, Menzel A, Mooney HA, Schwartz MD (2007) Shifting plant phenology in response to global change. Trends Ecol Evol 22:357–365

    Article  Google Scholar 

  • Dai J, Wang H, Ge Q (2013) Multiple phenological responses to climate change among 42 plant species in Xi’an, China. Int J Biometeorol 57:749–758

    Article  Google Scholar 

  • Dantec CF, Vitasse Y, Bonhomme M, Louvet JM, Kremer A, Delzon S (2014) Chilling and heat requirements for leaf unfolding in European beech and sessile oak populations at the southern limit of their distribution range. Int J Biometeorol 58:1–12

    Article  Google Scholar 

  • Darbyshire R, Webb L, Goodwin I, Barlow EWR (2014) Challenges in predicting climate change impacts on pome fruit phenology. Int J Biometeorol 58:1119–1133

    Article  Google Scholar 

  • Donner LJ, Wyman B, Hemler RS, et al. (2011) The dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component AM3 of the GFDL global coupled model CM3. J Clim 24:3484–3519. doi:10.1175/2011JCLI3955.1

    Article  Google Scholar 

  • Fu YSH, Piao SL, Zhao HF, et al. (2014) Unexpected role of winter precipitation in determining heat requirement for spring vegetation green-up at northern middle and high latitudes. Glob Chang Biol 20:3743–3755. doi:10.1111/gcb.12610

    Article  Google Scholar 

  • Gavenauskas A, Lamsodienė I (2004) Methodical recommendation for observation of phenology, Lithuanian University of Agriculture, 25 pp. in Lithuanian

  • Ge Q, Hao Z, Zheng J, Shao X (2013) Temperature changes over the past 2000 yr in China and comparison with the Northern Hemisphere. Clim Past 9:1153–1160. doi:10.5194/cp-9-1153-2013

    Article  Google Scholar 

  • Ge Q, Wang H, Dai J (2014) Simulating changes in the leaf unfolding time of 20 plant species in China over the twenty-first century. Int J Biometeorol 58:473–484

    Article  Google Scholar 

  • Giorgetta MA, Jungclaus JH, Reick CH, Legutke S, et al. (2013) Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the coupled model intercomparison project phase 5. J Adv Model Earth Syst 5:572–597

    Article  Google Scholar 

  • Gordo O, Sanz J (2010) Impact of climate change on plant phenology in Mediterranean ecosystems. Glob Chang Biol 16:1082–1106

    Article  Google Scholar 

  • Götz PK, Chmielewski FM, Homann T, et al. (2014) Seasonal changes of physiological parameters in sweet cherry (Prunus avium L.) buds. Sci Hortic 172:183–190. doi:10.1016/j.scienta.2014.04.012

    Article  Google Scholar 

  • Guo L, Dai J, Ranjitkar S, Xu J, Luedeling E (2013) Response of chestnut phenology in China to climate variation and change. Agric Meteorol 180:164–172

    Article  Google Scholar 

  • Guy RD (2014) The early buds gets to warm. New Phytol 202:7–9

    Article  Google Scholar 

  • Häkkinen R, Linkosalo T, Hari P (1998) Effects of dormancy and environmental factors on timing of bud burst in Betula pendula. Tree Physiol 18:707–712

    Article  Google Scholar 

  • Hanninen H (1987) Effects of temperature on dormancy release in woody plants: implications of prevailing models. Silva Fenn 21:279–299

    Article  Google Scholar 

  • Harrington CA, Gould PJ, St.Clair JB (2010) Modelling the effects of winter environment on dormancy release of Douglas fir. For Ecol Manag 259:215–222

    Article  Google Scholar 

  • Heide OM, Prestrud AK (2005) Low temperature, but not photoperiod, controls growth cessation and dormancy induction and release in apple and pear. Tree Physiol 25:109–114

    Article  CAS  Google Scholar 

  • Hibbard KA, Van Vurren DP, Edmonds J (2011) A primer on the representative concentration pathways (RCPs) and the coordination between the climate and integrated assessment modeling communities. CLIVAR Exch 16:12–15

    Google Scholar 

  • Horvath D, Anderson JV, Chao WS, Foley ME (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 8:534–540. doi:10.1016/j.tplants.2003.09.013

    Article  CAS  Google Scholar 

  • Hunter AF, Lechowicz MJ (1992) Predicting the timing of budburst in temperate trees. J Appl Ecol 29:597–604

    Article  Google Scholar 

  • Ibanez I, Primack RB, Miller-Rushing AJ, et al. (2010) Forecasting phenology under global warming. Philos Trans R Soc Lond Ser B Biol Sci 365:3247–3260

    Article  Google Scholar 

  • Jeong SJ, Medvigy D, Shevliakova E, Malyshev S (2013) Predicting changes in temperate forest budburst using continental-scale observations and models. Geophys Res Lett 40:1–6. doi:10.1029/2012GL054431

    Article  Google Scholar 

  • Juknys R, Sujetovienė G, Žeimavičius K, Šveikauskaitė I (2012a) Comparison of climate warming induced changes in silver birch (Betula pendula Roth) and lime (Tilia cordata Mill.) phenology. Balt For 18:25–32

    Google Scholar 

  • Juknys R, Žeimavičius K, Sujetovienė G, Gustainytė J (2012b) Response of tree seasonal development to climate warming. Pol J Environ Stud 21:107–113

    Google Scholar 

  • Kalvāne G, Romanovskaja D, Briede A, Baksiene E (2009) Influence of climate change on phenological phases in Latvia and Lithuania. Clim Res 39:209–219

    Article  Google Scholar 

  • Keenan TF, Richardson AD (2015) The timing of autumn senescence is affected by the timing of spring phenology: implications for predictive models. Glob Chang Biol 21:2634–2641. doi:10.1111/gcb.12890

    Article  Google Scholar 

  • Körner C (2006) Significance of temperature in plant life. In: Morrison JIL, Morecroft MD (eds) Plant growth and climate change. Blackwell, Oxford, pp. 48–69

    Chapter  Google Scholar 

  • Kramer K, Leinonen I, Loustau D (2000) The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems: an overview. Int J Biometeorol 44:67–75. doi:10.1007/s004840000066

    Article  CAS  Google Scholar 

  • Lang GA, Early JD, Martin GC, Darnell RL (1987) Endo-, para-, and ecodormancy: physiological terminology and classification for dormancy research. Hortscience 22:371–377

    Google Scholar 

  • Laube J, Sparks TH, Estrella N, et al. (2014) Chilling outweighs photoperiod in preventing precocious spring development. Glob Chang Biol 20:170–182. doi:10.1111/gcb.12360

    Article  Google Scholar 

  • Lebourgeois F, Pierrat JC, Perez V, Piedallu C, Cecchini EU (2010) Simulating phenological shifts in French temperate forest under two climatic change scenarios and driving global circulation models. Int J Biometeorol 54:563–581

    Article  Google Scholar 

  • Leyser O (2003) Regulation of shoot branching by auxin. Trends Plant Sci 8:541–545. doi:10.1016/j.tplants.2003.09.008

    Article  CAS  Google Scholar 

  • Linkosalo T, Häkkinen R, Hanninen H (2006) Models of the spring phenology of boreal and temperate trees: is there something missing? Tree Physiol 26:1165–1172

    Article  Google Scholar 

  • Linvill DE (1990) Calculating chilling hours and chill units from daily maximum and minimum temperature observations. Hortscience 25:14–16

    Google Scholar 

  • Luedeling E, Brown PH (2011) A global analysis of the comparability of winter chill models for fruit and nut trees. Int J Biometeorol 55:411–421. doi:10.1007/s00484-010-0352-y

    Article  Google Scholar 

  • Luedeling E, Guo L, Dai J, Leslie C, Blanke MM (2013) Differential responses of trees to temperature variation during the chilling and forcing phases. Agric Meteorol 181:33–42. doi:10.1016/j.agrformet.2013.06.018

    Article  Google Scholar 

  • Martin GM, Bellouin N, Collins WJ, et al. (2011) The HadGEM2 family of Met Office unified model climate configurations. Geosci Model Dev 4:723–757. doi:10.5194/gmd-4-723-2011

    Article  Google Scholar 

  • Matzneller P, Blümel K, Chmielewski FM (2014) Models for the beginning of sour cherry blossom. Int J Biometeorol 58:703–715. doi:10.1007/s00484-013-0651-1

    Article  Google Scholar 

  • Meier GA, Brown JF, Evelsizer RJ, et al. (2015) Phenology and climate relationships in aspen (Populus tremuloides Michx.) forest and woodland communities of southwestern Colorado. Ecol Indic 48:189–197

    Article  Google Scholar 

  • Menzel A, Fabian P (1999) Growing season extended in Europe. Nature 397:659

    Article  CAS  Google Scholar 

  • Menzel E, Sparks TH, Estrella N, et al. (2006) European phenological response to climate change matches the warming pattern. Glob Chang Biol 12:1–8. doi:10.1111/j.1365-2486.2006.01193.x

    Article  Google Scholar 

  • Morin X, Lechowicz MJ, Augspurger C, et al. (2009) Leaf phenology in 22 North America tree species during the 21st century. Glob Chang Biol 15:961–975

    Article  Google Scholar 

  • Olsson C, Bolmgren K, Lindström B, Jönsson AM (2013) Performance of tree phenology models along a bioclimatic gradient in Sweden. Ecol Model 266:103–117

    Article  Google Scholar 

  • Panchen ZA, Primack RB, Nordt B, et al. (2014) Leaf out times of temperate woody plants are related to phylogeny, deciduousness, growth habit and wood anatomy. New Phytol 203:1208–1219

    Article  CAS  Google Scholar 

  • Peñuelas J, Rutishauser T, Filella I (2009) Phenology feedbacks on climate change. Science 324:887–888

    Article  Google Scholar 

  • Perry TO (1971) Dormancy of trees in winter. Science 171:29–36

    Article  CAS  Google Scholar 

  • Polgar CA, Primack RB (2011) Leaf-out phenology of temperate woody plants: from trees to ecosystems. New Phytol 191:926–941

    Article  Google Scholar 

  • Polgar C, Gallinat A, Primack RB (2014) Drivers of leaf-out phenology and their implications for species invasions: insights from Thoreau’s Concord. New Phytol 202:106–115

    Article  Google Scholar 

  • Primack RB, Laube J, Gallinat AS, Menzel A (2015) From observations to experiments in phenology research: investigating climate change impacts on trees and shrubs using dormant twigs. Ann Bot 116:889–897. doi:10.1093/aob/mcv032

    Article  Google Scholar 

  • Richardson AD, O’Keefe J (2009) Phenological differences between understory and overstory: a case study using the long-term Harvard Forest records. In Noormets A (ed) Phenology of ecosystem processes. Springer Science + Business Media, pp 87–117

  • Robinson TMP, La Pierre KJ, Vadeboncoeur MA, et al. (2013) Seasonal, not annual precipitation drives community productivity across ecosystems. Oikos 122:727–738

    Article  Google Scholar 

  • Rohde A, Bhalerao RP (2007) Plant dormancy in the perennial context. Trends Plant Sci 12:217–223

    Article  CAS  Google Scholar 

  • Romanovskaja D, Bakšienė E, Raukas A, Tripolskaja L (2012) Influence of climate change on the European hazel (Corylus avellana L.) and Norway maple (Acer platanoides L.) phenology in Lithuania during the period 1961–2010. Balt For 18:228–236

    Google Scholar 

  • Sarvas R (1974) Investigations on the annual cycle of development of forest trees. II. Autumn dormancy and winter dormancy. Commun Inst Fenn 84:1–101

    Google Scholar 

  • Shen M, Tang Y, Chen J, et al. (2011) Influences of temperature and precipitation before the growing season on spring phenology in grasslands of the central and Eastern Qinghai-Tibetan Plateau. Agric For Meteorol 151:1711–1722

    Article  Google Scholar 

  • Stevens B, Giorgetta MA, Esch M, Mauritsen T, et al. (2013) Atmospheric component of the MPI-M Earth System Model: ECHAM6. J Adv Model Earth Syst 5:146–172. doi:10.1002/jame.20015

    Article  Google Scholar 

  • Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456–457:12–29

    Article  Google Scholar 

  • Valentini N, Me G, Ferrero R, Spanna F (2001) Use of bioclimatic indexes to characterize phenological phases of apple varieties in Northern Italy. Int J Biometeorol 45:191–195

    Article  CAS  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, et al. (2011) The representative concentration pathways: an overview. Clim Chang 109:5–31

    Article  Google Scholar 

  • Vegis A (1964) Dormancy in higher plants. Annu Rev Plant Physiol 15:185–224

    Article  CAS  Google Scholar 

  • Vitasse Y, Francois C, Delpierre N, Dufrene E, et al. (2011) Assessing the effects of climate change on the phenology of European temperate trees. Agric For Meteorol 151:969–980

    Article  Google Scholar 

  • Weinberger J (1950) Chilling requirements of peach varieties. Proc Am Soc Hort Sci 56:123–133

    Google Scholar 

  • Wielgolaski FE (2003) Climatic factors governing plant phenological phases along a Norwegian fjord. Int J Biometeorol 47:213–220

    Article  CAS  Google Scholar 

  • Wolkovich EM, Cook BI, Allen JM, et al. (2012) Warming experiments underpredict plant phenological responses to climate change. Nature 485:494–494. doi:10.1038/nature11014

    CAS  Google Scholar 

  • World Meteorological Organization (2007) The role of climatological normals in a changing climate. WCDMP-No. 61, WMO.TD No.1377. WMO, Geneva

  • Yu H, Luedeling E, Xu J (2010) Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. Proc Natl Acad Sci U S A 107:22151–22156

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gintarė Sujetovienė.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Juknys, R., Kanapickas, A., Šveikauskaitė, I. et al. Response of deciduous trees spring phenology to recent and projected climate change in Central Lithuania. Int J Biometeorol 60, 1589–1602 (2016). https://doi.org/10.1007/s00484-016-1149-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-016-1149-4

Keywords

Navigation