International Journal of Biometeorology

, Volume 60, Issue 9, pp 1325–1340 | Cite as

Regional climate change scenarios applied to viticultural zoning in Mendoza, Argentina

  • María Fernanda Cabré
  • Hervé Quénol
  • Mario Nuñez
Original Paper


Due to the importance of the winemaking sector in Mendoza, Argentina, the assessment of future scenarios for viticulture is of foremost relevance. In this context, it is important to understand how temperature increase and precipitation changes will impact on grapes, because of changes in grapevine phenology and suitability wine-growing regions must be understood as an indicator of climate change. The general objective is to classify the suitable areas of viticulture in Argentina for the current and future climate using the MM5 regional climate change simulations. The spatial distribution of annual mean temperature, annual rainfall, and some bioclimatic indices has been analyzed for the present (1970–1989) and future (2080–2099) climate under SRES A2 emission scenario. In general, according to projected average growing season temperature and Winkler index classification, the regional model estimates (i) a reduction of cool areas, (ii) a westward and southward displacement of intermediate and warm suitability areas, and (iii) the arise of new suitability regions (hot and very hot areas) over Argentina. In addition, an increase of annual accumulated precipitation is projected over the center-west of Argentina. Similar pattern of change is modeled for growing season, but with lower intensity. Furthermore, the evaluation of projected seasonal precipitation shows a little precipitation increase over Cuyo and center of Argentina in summer and a little precipitation decrease over Cuyo and northern Patagonia in winter. Results show that Argentina has a great potential for expansion into new suitable vineyard areas by the end of twenty-first century, particularly due to projected displacement to higher latitudes for most present suitability winegrowing regions. Even though main conclusions are based on one global-regional model downscaling, this approach provides valuable information for implementing proper and diverse adaptation measures in the Argentinean viticultural regions. It has been concluded that regional climate change simulations are an adequate methodology, and indeed, the MM5 regional model is an appropriate tool to be applied in viticultural zoning in Mendoza, Argentina.


Argentinean viticultural zoning Bioclimatic indices Regional climate change scenarios MM5 regional model 



We thank two anonymous reviewers for insightful and constructive comments. Particularly, the first author also thanks the postdoctoral fellowship at the University of Rennes 2 (France) in 2013, which has motivated the writing of this manuscript.

Supplementary material

484_2015_1126_MOESM1_ESM.docx (614 kb)
ESM 1 (DOCX 613 kb)
484_2015_1126_MOESM2_ESM.psd (885 kb)
Fig. S1 Grouping of climate-maturity base on phenological requirements for berry development to produce high to premium quality wine. This is based on examination of production in benchmark regions for each variety (From Jones 2008). (PSD 885 kb)
484_2015_1126_Fig7_ESM.gif (168 kb)
Fig. S2

Sensitivity of the grape quality to temperature variability. Boundaries of suitable climates for wine production illustrating the “inverse U” curve that defines optimum temperatures for production of quality wine. Note that present climates may be above or below the optimum so that warming may increase quality in some regions and decrease quality in others. There is also plasticity dependent on variety (figure S1) and on variation in production techniques (From Schultz 2008) (GIF 168 kb)

484_2015_1126_MOESM3_ESM.tif (205 kb)
High resolution image (TIF 204 kb)


  1. Adams DO (2006) Phenolics and ripening in grape berries. Am J Enol Vitic 57:249–256Google Scholar
  2. Agosta EA, Cavagnaro M (2010) Variaciones interanuales de la precipitación de verano y el rendimiento del cultivo de la vid en Mendoza. Asoc Argent Geofísicos Geodestas GEOACTA 35:1–11Google Scholar
  3. Agosta EA, Cavagnaro M, Canziani P (2010) El rendimiento de vid y las variaciones de temperatura y precipitación en Mendoza. Revista Enología. Ed. N°2. Marzo-Abril 2010Google Scholar
  4. Agosta EA, Canziani P, Cavagnaro M (2012) Regional climate variability impacts on the annual grape yield in Mendoza. Argent Am Meteor Soc 51(6):993–1009. doi: 10.1175/JAMC-D-11-0165.1 Google Scholar
  5. Amerine MA, Winkler AJ (1944) Composition and quality of musts and wines of California grapes. Hilgardia 15:493–675CrossRefGoogle Scholar
  6. Anderson K, Christopher Findlay, Sigfredo Fuentes and Stephen Tyerman (2008). Garnaut Climate change review: viticulture, wine and climate change. University of Adelaide. June 2008Google Scholar
  7. Aruani AC (2010) El Cambio Climático y la Vitivinicultura. Estrategias de Adaptación en Argentina. Instituto Nacional de Vitivinicultura, Mendoza Argentina. 26 de Agosto de 2010.Google Scholar
  8. Austin ME, Bondari K (1988) A study of cultural and environmental factors on the yield of Vitis rotundifolia. Sci Hortic 34:219–227CrossRefGoogle Scholar
  9. Barbero N, Rössler C, Canziani P (2008) Cambio climático y viticultura: variabilidad climática presente y futura y aptitud viticola en 3 localidades de La patagonia. Enología 5:1–8Google Scholar
  10. Beelman RB, Gallander JF (1979) Wine deacidification. Adv Food Res 25:1–53CrossRefGoogle Scholar
  11. Bertin RI (2009) Plant phenology and distribution in relation to recent climate change. J Torrey Bot Soc 135:126–146CrossRefGoogle Scholar
  12. Bindi M, Fibbi L, Gozzini B, Orlandini S, Miglietta F (1996) Modeling the impact of future climate scenarios on yield and variability of grapevine. Clim Res 7:213–224CrossRefGoogle Scholar
  13. Boag S, Tassie L, Hubick K (1988) The greenhouse effect: implications for the Australian grape and wine industry. Wine Ind J 3(2):30–36Google Scholar
  14. Bock A, Sparks T, Estrella N, Menzel A (2011) Changes in the phenology and composition of wine from Franconia Germany. Clim Res 50:69–81CrossRefGoogle Scholar
  15. Bock A, Sparks TH, Estrella N, Menzel A (2013) Climate-induced changes in grapevine yield and must sugar content in Franconia (Germany) between 1805 and 2010. PLoS One 8(7), e69015. doi: 10.1371/journal.pone.0069015 CrossRefGoogle Scholar
  16. Bonnefoy C, Quénol H, Planchon O, Barbeau G (2010) Températures et indices bioclimatiques dans le vignoble du Val de Loire dans un contexte de changement climatique, EchoGéo [En ligne], 14 | 2010, mis en ligne le 13 décembre 2010, consulté le 01 avril 2013. URL:; doi: 10.4000/ echogeo.12146
  17. Branás J, Berdon G, Levadoux L (1946) Eléments de Viticultura Générale. MontpellierGoogle Scholar
  18. Briche E, Cabré MF, Saulo C, Nuñez MN, Quénol H (2013) Characterization and comparison of mean temperatures and Winkler index evolution between observed and simulated data (1970–1989) in wine-growing regions of Argentina. International Conference Climate Change and International Response. Impacts and adaptation strategies for public, commercial and private actors. May 27-29, 2013. Reg Klam. Dresden, GermanyGoogle Scholar
  19. Buttrose MS, Hale CR, Kliewer WM (1971) Effect of temperature on composition of Cabernet Sauvignon berries. Am J Enol Vitic 22:71–75Google Scholar
  20. Cabré MF, Solman SA, Nuñez MN (2010) Creating regional climate change scenarios over southern South America for the 2020’s and 2050’s using the pattern scaling technique: validity and limitations. Clim Chang 98:449–469. doi: 10.1007/s10584-009-9737-5 CrossRefGoogle Scholar
  21. Cabré MF, Quénol H, Nuñez MN (2013) Regional climate change scenarios applied to viticultural zoning in Argentina. XIV Congreso Latinoamericano de Viticultura y Enología. 21-23 Noviembre2013, Tarija, BoliviaGoogle Scholar
  22. Cabré MF, Solman S, Nuñez MN (2014) Climate downscaling over southern South America for present-day climate (1970–1989) using the MM5 model. Mean, interannual variability and internal variability. Atmósfera 27(2):117–140CrossRefGoogle Scholar
  23. Cahill KN, Lobell DB, Field CB, Bonfils C, Hayhoe K (2007) Modeling climate change impacts on wine grape yields and quality in California. Global warming, which potential impacts on the vineyards? March 28-30, 2007.Google Scholar
  24. Camps JO, Ramos MC (2010) Grape harvest and yield responses to inter-annual changes in temperature and precipitation in an area of north-east Spain with a Mediterranean climate. Int J Biometeorol. doi: 10.1007/s00484-011-0489-3 Google Scholar
  25. Carbonneau A, Riou C, Guyon D, Riom J, Schneider C (1992) Agrométéorologie de la vigne en France. Office des Publications Officielles des Communautés Européennes, LuxembourgGoogle Scholar
  26. Carter S (2006) The projected influence of climate change on the South African wine industry. Interim Report IR-06-043, International Institute for Applied Systems Analysis: 33 p.Google Scholar
  27. Cheynier V, Dueñas-Paton M, Salas E, Maury C, Souquet J-M, Sarni-Machado P, Fulcrand H (2006) Structure and properties of wine pigments and tannins. Am J Enol Vitic 57:298–305Google Scholar
  28. Christidis N, Stott PA, Brown S, Karoly DJ, Caesar J (2007) Human contribution to the lengthening of the growing season during 1950–99. J Climate 20:5441–5454CrossRefGoogle Scholar
  29. Chuine I, Yiou P, Viovy N, Seguin B, Daux V, Ladurie EL (2004) Historical phenology: grape ripening as a past climate indicator. Nature 432:289–290CrossRefGoogle Scholar
  30. Clark LR, Fitzpatrick RW, Murray RS, McCarthy MG (2002) Vineyard soil degradation following irrigation with saline groundwater for twenty years. 17 th World Congress of Soil Science, Bangkok, ThailandGoogle Scholar
  31. Conradie WJ, Carey VA, Bonnardot V, Saayman D, van Schoor LH (2002) Effect of different environmental factors on the performance of Sauvignon blanc grapevines in the Stellenbosch/Durbanville districts of South Africa. I. Geology, soil, climate, phenology and grape composition. S Afr J Enol Vitic 23:79–91Google Scholar
  32. Coombe BG (1987) Influence of temperature on composition and quality of grapes. Proceedings of the international symposium on grapevine canopy and vigor management (Vol. XXII IHC, pp. 23–35). Davis, USA: ISHS Acta Horticulturae 206Google Scholar
  33. Coombe BG, Iland P (2004) Grape berry development and winegrape quality, in P. R. Dry and B. G. Coombe (eds), Viticulture. Volume 1: Resources, [Second edition], Winetitles, Adelaide, pp. 210–48Google Scholar
  34. Corobov R, Overcenco A (2011) Dependence of grapevine productivity on meteorological conditions in the Republic of Moldova. Středová, H., Rožnovský, J., Litschmann, T. (eds): Mikroklima a mezoklima krajinných struktur a antropogenních prostředí. Skalní mlýn, 2. – 4.2. 2011, ISBN 978-80-86690-87-2Google Scholar
  35. Dalla Marta A, Grifoni D, Mancini M, Storchi P, Zipoli G, Orlandini S (2010) Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. J Agric Sci 148:657–666CrossRefGoogle Scholar
  36. Dry PR (1988) Climate change and the Australian grape and wine industry. The Australian Grapegrower and Winemaker, December, 14-15Google Scholar
  37. Duchêne E, Schneider C (2005) Grapevine and climatic changes: a glance at the situation in Alsace. Agron Sustain Dev 25:93–99. doi: 10.1051/agro:2004057 CrossRefGoogle Scholar
  38. Easterling DR (2002) Recent changes in frost days and the frost-free season in the United States. Bull Amer Meteorol Soc 83:1327–1332CrossRefGoogle Scholar
  39. Eitzinger J, Kubu G, Formayer H, Gerersdorfer T (2009) Climatic wine growing potential under future climate scenarious in Austria. Sustainable Development and Bioclimate: Reviewed Conference Proceedings, Vienna, Austria, 146–147Google Scholar
  40. Fraga H, Santos JA, Malheiro AC, Moutinho- Pereira J (2012) Climate change projections for the Portuguese viticulture using a multi-model ensemble. Ciencia Tec Vitiv 27(1):39–48Google Scholar
  41. Fraga H, Malheiro AC, Moutinho-Pereira J, Santos JA (2013a) Future scenarios for viticultural zoning in Europe: ensemble projections and uncertainties. Int J Biometeorol 57:909–925. doi: 10.1007/s00484-012-0617-8 CrossRefGoogle Scholar
  42. Fraga H, Malheiro AC, Moutinho-Pereira J, Jones GV, Alves F, Pinto JG, Santos JA (2013b) Very high resolution bioclimatic zoning of Portuguese wine regions: present and future scenarios. Reg Environ Change. doi: 10.1007/s10113-013-0490-y Google Scholar
  43. Fraga H, Malheiro AC, Moutinho-Pereira J, Cardoso R M, Soares PMM, Cancela JJ, Pinto JG and Santos JA (2014) Integrated analysis of climate, soil, topography and vegetative growth in Iberian viticultural regions. Plos One 9:e108078. ISSN 1932-6203 doi:  10.1371/journal.pone.0108078 Available at
  44. Gaál M, Moriondo M, Bindi M (2012) Modelling the impact of climate change on the Hungarian wine regions using random forest. Appl Ecol Environ Res 10:121–140CrossRefGoogle Scholar
  45. Galet P (1993) Précis de viticulture. Montpellier, Déhan, 582 ppGoogle Scholar
  46. Gatto J, Kim Byung-oh, Mahdavi P, Namekawa H, Tran H (2009) The future impact of climate change on the California wine industry and actions the State of California should take to address it. International Policy Studies Program, Stanford UniversityGoogle Scholar
  47. Gladstones J (1992) Viticulture and environment, Winetitles, Adelaide. SAGoogle Scholar
  48. Gladstones J (2005) Climate and Australian viticulture. In Viticulture 1 – Resources, Dry, P.R.; B.G. Coombe (eds) Winetitles; Adelaide, SA: 255 p.Google Scholar
  49. González G, Nazrala J, Beltrán M, Narvarro A, Borbón L, Senatra L, Albornoz L, Hidalgo A, López M, Gez MI, Mercado L, Poetta S, Alberto Ma (2009) Caracterización de uvas para vinificar en diferentes regiones de Mendoza (Argentina) Rev. FCA. UNCuyo. Tomo XLI, N° 1, 165-175Google Scholar
  50. Gordon C, Cooper C, Senior CA, Banks H, Gregory JM, Johns TC, Mitchell JFB, Wood RA (2000) The simulation of SST, sea ice extent and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments. Clim Dyn 16:147–168CrossRefGoogle Scholar
  51. Grell GA, Dudhia J, Stauffer DR (1993) A description of the fifth-generation Penn System/NCAR Mesoscale Model (MM5). NCAR Tech Note NCAR/TN -398 + 1A, 107 ppGoogle Scholar
  52. Grifoni D, Mancini M, Marachi G, Orlandini ZG (2006) Analysis of Italian wine quality using freely available meteorological information. Am J Enol Vitic 57(3):339–346Google Scholar
  53. Hall A, Jones GV (2009) Effect of potential atmospheric warming on temperature-based indices describing Australian winegrape growing conditions. Aust J Grape Wine Res 15(2):97–119CrossRefGoogle Scholar
  54. Huglin P (1983) Posibilites d’apprécitation obejetive du mileu viticole. Bull OIV 56:823–833Google Scholar
  55. Huglin P, Schneider C (1998) Biologie et écologie de la vigne. Éditions Tec & Doc Lavoisier, Cachan, FranceGoogle Scholar
  56. IPCC, 2013: Climate change 2013: the physical science basis. Contribution of working group i to the fifth assessment report of the intergovernmental panel on climate change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, doi: 10.1017/CBO9781107415324.
  57. Jackson RS (2008) Wine science principles and applications, 3rd edn. Elsevier, Oxford, England, 789 pagesGoogle Scholar
  58. Jackson DI, Lombard PB (1993) Environmental and management practices affecting grape composition and wine quality: a review. Am J Enol Vitic 4:409–430Google Scholar
  59. Jackson D, Schuster D (1987) The production of grapes & wine in cool climates. Butterworths of New Zealand (Ltd), Wellington, New Zealand, p. 5.Google Scholar
  60. Jones GV (2004) Making wine in a changing climate, Geotimes, August, 24-27Google Scholar
  61. Jones GV (2005) Climate change in the western United States grape growing regions. Acta Hort 689:41–60CrossRefGoogle Scholar
  62. Jones GV (2006) Climate and terroir: impacts of climate variability and change on wine. In: Macqueen RW, Meinert LD (eds) Fine wine and terroir. The geoscience perspective. Geosci Can Repr Ser 9. Geological Association of Canada, St. John’sNewfoundland, p. 247Google Scholar
  63. Jones GV (2008) Climate change and the global wine industry. Proceedings of the Thirteenth Australian Wine Industry Technical Conference, Adelaide, South Australia, 28 July - 2 August 2007. Editores : Pat J. Williams, Rae J. Blair, I. S. Pretorious. Editor : Australian Wine Industry Technical Conference Incorporated, ISBN 0975105442, 9780975105443. 400ppGoogle Scholar
  64. Jones GV, Duchêne E, Tomasi D, Yuste J, Braslavska O, Schultz HR (2005a) Changes in European winegrape phenology and relationships with climate. Proc. XIV GESCO Symposium, Geisenheim, GermanyGoogle Scholar
  65. Jones GV, White MA, Cooper OR, Storchmann K (2005b) Climate change and global wine quality. Clim Chang 73:319–343CrossRefGoogle Scholar
  66. Jones GV, Reid R, Vilks A (2012) Climate, grapes and wine: structure and suitability in a variable and changing climate pp.109–133 in The Geography of Wine: Regions, Terrior and Techniques, (Ed.): Dougherty, P. Springer Press, p.255Google Scholar
  67. Keeling CD, Chin FJS, Whorf TP (1996) Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382:146–149CrossRefGoogle Scholar
  68. Keller MM (2010) Managing grapevines to optimise fruit development in a challenging environment: a climate change primer for viticulturists. Aust J Grape WineRes 16:56–69CrossRefGoogle Scholar
  69. Kenny GJ, Harrison PA (1992) The effects of climate variability and change on grape suitability in Europe. J Wine Res 3:163–183CrossRefGoogle Scholar
  70. Kliewer WM (1971) Effect of day temperature and light intensity on concentration of malic and tartaric acids in Vitis vinifera L. grapes. J Am Soc Hortic Sci 96:372Google Scholar
  71. Kliewer WM, Torres RE (1972) Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 2:71–77Google Scholar
  72. Krüger LF, da Rocha RP, Reboita MS, Ambrizzi T (2012) RegCM3 nested in HadAM3 scenarios A2 and B2: projected changes in extratropical cyclogenesis, temperature and precipitation over the South Atlantic Ocean. Clim Chang 113:599–621CrossRefGoogle Scholar
  73. Kubach HK (2009) Wine Grape Suitability and Quality in a Changing Climate, An Assessment of Adams County, Pennsylvania (1950 – 2099) (accessing 105 date: 03.10.2014)
  74. Laget F, Tondut JL, Deloire A, Kelly MT (2008) Climate trend in a specific Mediterranean viticultural area between 1950 and 2006. J Int Sci Vigne Vin 42:113–123Google Scholar
  75. Linderholm HW (2006) Growing season changes in the last century. Agric For Meteorol 137(1-2):1–14CrossRefGoogle Scholar
  76. Linderholm HW, Walther A, Chen D (2008) Twentieth-century trends in the thermal growing season in the Greater Baltic Area. Clim Chang 87:405–419. doi: 10.1007/s10584-007-9327-3 CrossRefGoogle Scholar
  77. Lobell DB, Field CB, Cahill KN, Bonfils C (2006) Impacts of future climate change on California perennial crop yields: model projections with climate and crop uncertainties. Agric For Meteorol 141:208–218CrossRefGoogle Scholar
  78. Lopes J, Eiras-Dias JE, Abreu F, Climaco P, Cunha JP, Silvestre J (2008) Thermal requirements, duration and precocity of phenological stages of grapevine cultivars of the Portuguese collection. Ci^encia Tec Vitiv 23:61–71Google Scholar
  79. Malheiro AC, Santos JA, Fraga H, Pinto JG (2010) Climate change scenarios applied for viticultural zoning in Europe. Clim Res 43:163–177CrossRefGoogle Scholar
  80. Malheiro AC, Campos R, Fraga H, Eiras-Dias J, Silvestre J, Santos JA (2013) Winegrape phenology and temperature relationships in the Lisbon Wine Region, Portugal. J Int Sci Vigne Vin 47:287–299Google Scholar
  81. Mandelli F, Tonietto J, Hasenack H, Weber EJ (2005) Zoneamento Clim_atico para a produc_ ~ ao de uvas para vinos de qualidade. P. 14 Proceeding of Congresso Brasileiro de Agrometeorologia, Campinas, 14Google Scholar
  82. Marengo JA, Jones R, Alves LM, Valverde MC (2009) Future change of temperature and precipitation extremes in South America as derived from the PRECIS regional climate modeling system. Int J Climatol 29:2241–2255CrossRefGoogle Scholar
  83. McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) (2001) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of the working group II to the third assessment report of the inter-governmental panel on climate change. Cambridge University Press, Cambridge, UK, 1000 ppGoogle Scholar
  84. Menzel A, Estrella N (2001) Plant phenological changes. In: Walther GR, Burga CA, Edwards PJ (eds) Fingerprints of climate change—adapted behaviour and shifting species ranges. Kluwer Academic/Plenum, New York and London, pp 123–137Google Scholar
  85. Menzel A, Jakobi G, Ahas R, Scheifinger H, Estrella N (2003) Variations of the climatological growing (1951–2000) in Germany compared in other countries. Int J Climatol 23:793–795CrossRefGoogle Scholar
  86. Mérouge I, Seguin G, Arrouays D (1998) Les sols et l’alimentation hydrique de la vigne à Pomerol: état hydrique et croissance de la vigne en 1995. J Int Sci Vigne Vin 32(2):59–68Google Scholar
  87. Mira de Orduña R (2010) Climate change associated effects on grape and wine quality and production. Food Res Int 43:1844–1855Google Scholar
  88. Moriondo M, Bindi M, Fagarazzi C, Ferrise R, Trombi G (2010) Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Reg Environ Change. doi: 10.1007/s10113-010-0171-z Google Scholar
  89. Mullins MG, Bouquet A, Williams LE (1992) Biology of the grapevine. Cambridge University Press, Great BritainGoogle Scholar
  90. Myneni RB, Keeling CD, Tucker CJ, Asrar G, Nemani RR (1997) Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386:698–702CrossRefGoogle Scholar
  91. Neethling E, Barbeau G, Bonnefoy C, Quénol H (2012) Change in climate and berry composition for grapevine varieties cultivated in the Loire Valley. Clim Res 53:89–101CrossRefGoogle Scholar
  92. Nemani RR, White MA, Cayan DR, Jones GV, Running SW, Coughlan JC, Peterson DL (2001) Asymmetric warming over coastal California and its impact on the premium wine industry. Clim Res 19:25–34CrossRefGoogle Scholar
  93. Neumann PA, Matzarakis A (2011) Viticulture in southwest Germany under climate change conditions. Clim Res 47:161–169CrossRefGoogle Scholar
  94. New MG, Hulme M, Jones PD (1999) Representing twentieth-century space time climate variability. Part I. Development of a 1961–1990 mean monthly terrestrial climatology. J Clim 12:829–856CrossRefGoogle Scholar
  95. New MG, Hulme M, Jones PD (2000) Representing twentieth-century space time climate variability. Part II. Development of a 1901–1996 mean monthly terrestrial climatology. J Clim 13:2217–2238CrossRefGoogle Scholar
  96. Nuñez MN, Solman SA, Cabré MF (2008) Regional climate change experiments over southern South America II: climate change scenarios in the late twenty first century. Clim Dyn 32:1081–1095CrossRefGoogle Scholar
  97. Orlandini S, Di Stefano V, Lucchesini P, Puglisi A, Bartolini G (2009) Current trends of agroclimatic indices applied to grapevine in Tuscany (Central Italy). Q J Hung Meteorol Serv 113(1–2)Google Scholar
  98. Petrie PR, Sadras VO (2008) Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Aust J Grape Wine Res 14:33–45. doi: 10.1111/j.1755-0238.2008.00005.x CrossRefGoogle Scholar
  99. Pope VD, Gallani ML, Rowntree PR, Stratton RA (2000) The impact of new physical parameterizations in the Hadley Centre climate model. Clim Dynam 16:123–146. doi: 10.1007/s003820050009 CrossRefGoogle Scholar
  100. Quénol H (2012) Observation et modélisation spatiale du climat aux échelles fines dans un contexte de changement climatique Volume 1: Position et projet scientifique. Unité Mixte de Recherche 6554 LETG du CNRS Université de Rennes 2 Haut-Bretagne. pp. 103Google Scholar
  101. Ramos MC, Jones GV, Martı’nez-Casasnovas JA (2008) Structure and trends in climate parameters affecting winegrape production in northeast Spain. Clim Res 38:1–15CrossRefGoogle Scholar
  102. Rayner NA, Parker DE, Horton EB, Folland CK, Alexander LV, Rowel DP, Kent EC, Kaplan A (2003) Global analyses of SST, sea ice, and night marine air temperature since the late nineteenth century. J Geophys Res 108:4407. doi: 10.1029/2002JD002670 CrossRefGoogle Scholar
  103. Reynolds AG, Naylor AP (1994) Pinot-Noir and riesling grapevines respond to water-stress duration and soil water-holding capacity. HortScience 29:1505–1510Google Scholar
  104. Richards AL, Hutson JL, McCarthy MG (2008) Monitoring and modelling transient rootzone salinity in drip irrigated viticulture. In: Proceedings of the 13 th AWITC eds Rae Blair, Pat Williams, Sakkie Pretorius, pp 212-217Google Scholar
  105. Riou C, Carbonneau A, Becker N, Caló A, Costacurta A, Castro R, Pinto PA, Carneiro LC, Lopes C, Clímaco P, Panagiotou MM, Sotez V, Beaumond HC, Burril A, Maes J, Vossen P (1994) Le determinisme climatique de la maturation du raisin: application au zonage de la teneur en sucre dans la Communaute Europeenne. Office des Publications Officielles des Communautes Europeennes, LuxembourgGoogle Scholar
  106. Robeson SM (2002) Increasing growing-season length in Illinois during the 20th century. Clim Chang 52:219–238CrossRefGoogle Scholar
  107. Rodó X, Comím FA (2000) Links between large-scale anomalies, rainfall and wine quality in the Iberian Peninsula during the last three decades. Glob Chang Biol 6:267–273CrossRefGoogle Scholar
  108. Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds A (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60CrossRefGoogle Scholar
  109. Rössler CE, Barbero NE (2008) Análisis del cambio climático en cuatro localidades argentinas: una mirada sobre la viticultura. XII Reunión Argentina de Agrometeorología, 8 al 10 de octubre de 2008. San Salvador de Jujuy-ArgentinaGoogle Scholar
  110. Rössler C, Barbero N, Carbajal Benitez G, Canziani P (2006) Comparison of climate change projections for Patagonia viticultural regions generated by GCMs and a regional climate model PRECIS. Equipo Interdisciplinario para Estudios de Procesos Atmosféricos para el Cambio Global. Universidad Católica Argentina (UCA), Buenos Aires. ArgentinaGoogle Scholar
  111. Ruffner HP, Hawker JS, Hale CR (1976) Temperature and enzymic control of malate metabolism in berries of Vitis vinifera. Phytochemistry 15:1877–1880CrossRefGoogle Scholar
  112. Ruml M, Vukovic A, Vujadinovic M, Djurdjevic V, Rankovic-Vasic Z, Atanackovic Z, Sivcec B, Markovic N, Matijasevic S, Petrovic N (2012) On the use of regional climate models: implications of climate change for viticulture in Serbia. Agric For Meteorol 158–159:53–62CrossRefGoogle Scholar
  113. Sadras VO, Petrie PR (2011) Climate shifts in south-eastern Australia: early maturity of Chardonnay, Shiraz and Cabernet Sauvignon is associated with early onset rather than faster ripening. Aust J Grape Wine Res 17:199–205CrossRefGoogle Scholar
  114. Santos TP, Lopes CM, Rodrigues ML, Souza CR, Maroco JP, Pereira JS, Silva JR, Chaves MM (2003) Partial rootzone drying: effects on growth and fruit quality of field-grown grapevines (Vitis vinifera). Funct Plant Biol 30(6):663. doi: 10.1071/fp02180 CrossRefGoogle Scholar
  115. Santos JA, Malheiro AC, Karremann MK, Pinto JG (2011) Statistical modelling of grapevine yield in the Port Wine region under present and future climate conditions. Int J Biometeorol 55(2):119–131. doi: 10.1007/s00484-010-0318-0 CrossRefGoogle Scholar
  116. Santos JA, Grätsch SD, Karremann MK, Jones GV, Pinto JG (2013) Ensemble projections for wine production in the Douro Valley of Portugal. Clim Chang. doi: 10.1007/s10584-012-0538-x Google Scholar
  117. Schultz H (2000) Climate change and viticulture: a European perspective on climatology, carbon dioxide, and UV-B effects. Aust J Grape Wine Res 6:2–12CrossRefGoogle Scholar
  118. Schultz HR, Jones GV (2010) Climate induced historic and future changes in viticulture. J Wine Res 21:137–145CrossRefGoogle Scholar
  119. Seguin G (1983) Influence des terroirs viticoles sur la constitution et la qualité des vendanges. Bull OIV 623:3–18Google Scholar
  120. Solman SA, Cabré MF, Nuñez MN (2007) Regional climate change experiments over southern South America: I: present climate. 2008 Climate Dynamics 30:533-552, DOI 10:1007/s00382-007-0304-3.Google Scholar
  121. Stock M, Gerstengarbe FW, Kartschall T, Werner PC (2005) Reliability of climate change impact assessments for viticulture. Acta Hortic 689:29–39CrossRefGoogle Scholar
  122. Tarara JM, Lee J, Spayd SE, Scagel CF (2008) Berry temperature and solar radiation alter acylation, proportion, and concentration of anthocyanin in Merlot grapes. Am J Enol Vitic 59:235–247Google Scholar
  123. Tonietto J (1999) Les macroclimats viticoles mondiaux et l’influence du mésoclimat sur la typicité de la Syrah et du Muscat de Hambourg dans le sud de la France: Nationale Supérieure Agronomique, MontpellierGoogle Scholar
  124. Tonietto J, Carbonneau A (2004) A multicriteria climatic classification system for grape-growing regions worldwide. Agricultural and Forest Meteorology. 124/1-2, 81-97Google Scholar
  125. Tucker CJ, Slayback DA, Pinzon JE, Los SO, Myneni RB, Taylor MG (2001) Higher northern latitude normalized difference vegetation index and growing season trends from 1982 to 1999. Int J Biometeorol 45:184–190CrossRefGoogle Scholar
  126. van Leeuwen S (2006) The concept of terroir in viticulture. J Wine Res 17(1):1–10CrossRefGoogle Scholar
  127. van Leeuwen C, Friant P, Choné X, Tregoat O, Koundouras S, Dubordieu D (2004) Influence of climate, soil, and cultivar on terroir. Am J Enol Vitic 55(3):207–217Google Scholar
  128. van Leeuwen C, Tregoat O, Choné X, Bois B, Pernet D, Gaudillère J-P (2009) Vine water status is a key factor in grape ripening and vintage quality for red Bordeaux wine. How can it be assessed for vineyard management purposes? J. Int. Sci. Vigne Vin, 2009, 43, n°3, 121-134 ©Vigne et Vin Publications Internationales (Bordeaux, France)Google Scholar
  129. Vink N, Deloire A, Bonnardot V, Ewert J (2012) Climate change and the future of South Africa’s wine industry. Int J Clim Chang Strateg Manag 4(4):420–441CrossRefGoogle Scholar
  130. Walther GR, Post E, Convey P, Menzel A, Parmesan C, Beebee TJC, Fromentin JM, Hoegh-Guldberg O, Bairlein F (2002) Ecological responses to recent climate change. Nature 416:389–395CrossRefGoogle Scholar
  131. Webb LB, Whetton PH, Barlow EWR (2007) Modelling the relationship between climate, winegrape price and winegrape quality in Australia. Clim Res 36(1):89–98Google Scholar
  132. Webb LB, Whetton PH, Barlow EWR (2008) Climate change and grape quality in Australia. Clim Res 36(2):99–111CrossRefGoogle Scholar
  133. Webb LB, Whetton PH, Barlow EWR (2011) Observed trends in winegrape maturity in Australia. Glob Chang Biol 17:2707–2719CrossRefGoogle Scholar
  134. White MA, Diffenbaugh NS, Jones GV, Pal JS, Giorgi F (2006) Extreme heat reduces and shifts United States premium wine production in the 21st century. Proc Natl Acad Sci U S A 103:11217–11222CrossRefGoogle Scholar
  135. Winkler AJ, Cook JA, Kliewere WM, Lider LA (1974) General viticulture. University of California Press, BerkeleyGoogle Scholar

Copyright information

© ISB 2016

Authors and Affiliations

  • María Fernanda Cabré
    • 1
    • 2
  • Hervé Quénol
    • 3
  • Mario Nuñez
    • 1
    • 2
    • 4
  1. 1.Centro de Investigaciones del Mar y la Atmósfera (CIMA/CONICET-UBA)Buenos AiresArgentina
  2. 2.Instituto Franco Argentino de Estudios del Clima y sus Impactos (UMI IFAECI/CNRS)Buenos AiresArgentina
  3. 3.Labotatoire LETG-Rennes-COSTEL, UMR6554 LETG du CNRS, Université Rennes 2, Place du Recteur Henri le MoalRennesFrance
  4. 4.Departamento de Ciencias de la Atmósfera y los Océanos(DCAO/FCEN)Buenos AiresArgentina

Personalised recommendations