International Journal of Biometeorology

, Volume 60, Issue 5, pp 629–638 | Cite as

Ratios of colony mass to thermal conductance of tree and man-made nest enclosures of Apis mellifera: implications for survival, clustering, humidity regulation and Varroa destructor

  • Derek MitchellEmail author
Original Paper


In the absence of human intervention, the honeybee (Apis mellifera L.) usually constructs its nest in a tree within a tall, narrow, thick-walled cavity high above the ground (the enclosure); however, most research and apiculture is conducted in the thin-walled, squat wooden enclosures we know as hives. This experimental research, using various hives and thermal models of trees, has found that the heat transfer rate is approximately four to seven times greater in the hives in common use, compared to a typical tree enclosure in winter configuration. This gives a ratio of colony mass to lumped enclosure thermal conductance (MCR) of less than 0.8 kgW−1 K for wooden hives and greater than 5 kgW−1 K for tree enclosures. This result for tree enclosures implies higher levels of humidity in the nest, increased survival of smaller colonies and lower Varroa destructor breeding success. Many honeybee behaviours previously thought to be intrinsic may only be a coping mechanism for human intervention; for example, at an MCR of above 2 kgW−1 K, clustering in a tree enclosure may be an optional, rare, heat conservation behaviour for established colonies, rather than the compulsory, frequent, life-saving behaviour that is in the hives in common use. The implied improved survival in hives with thermal properties of tree nests may help to solve some of the problems honeybees are currently facing in apiculture.


Apis mellifera Tree nest Varroa Heat transfer Clustering 



The authors acknowledge the Paynes Southdown Bee Farms, Ltd.; Modern Bee Keeping, Ltd.; Bee Hive Supplies, Ltd.; Swienty Sønderborg Denmark; J. Haverson; D. Pearce; C.E. Mitchell; and Y. Hunt for the loan of test hives.


  1. Anderson EJ (1948) Hive humidity and its effect upon wintering of bees. J Econ Entomol 41(4):608–616. doi: 10.1093/jee/41.4.608 CrossRefGoogle Scholar
  2. Bogdan M, Hoerter J, Moore F (2005) Meeting the insulation requirements of the building envelope with polyurethane and polyisocyanurate foam. J Cell Plast 41(1):41–56. doi: 10.1177/0021955X05049869 CrossRefGoogle Scholar
  3. Buttemer WA (1985) Energy relations of winter roost-site utilization by American goldfinches (Cardue/is tristis). Oecol (Berlin) 68:126–132. doi: 10.1007/BF00379484 CrossRefGoogle Scholar
  4. Chen Y et al (2012) Nosema ceranae infection intensity highly correlates with temperature. Invertebr Patholol 111(3):264–267. doi: 10.1016/j.jip.2012.08.014 CrossRefGoogle Scholar
  5. Coombs AB, Bowman J, Garroway CJ (2010) Thermal properties of tree cavities during winter in a northern hardwood forest. J Wildlife Manag 74(8):1875–1881. doi: 10.2193/2009-560 CrossRefGoogle Scholar
  6. Crane E (1990) Bees and beekeeping. Heineman, OxfordGoogle Scholar
  7. Cushman D. (2011) Drawings of hives and hive parts. Accessed 11 Jan 2014
  8. de Jong D, Goncalves LG, Morse RA (1984) Dependence on climate of the virulence of Varroa jacobsoni. J Apicult Res 65(3):117–121Google Scholar
  9. Delaplane KS, van der Steen J, Guzman-Novoa E (2013) Standard methods for estimating strength parameters of Apis mellifera colonies. J Apicult Res 52(1). doi:  10.3896/IBRA.
  10. Doull KM (1976) The effects of different humidities on the hatching of the eggs of honeybees. Apidologie 7(1):61–66. doi: 10.1051/apido:19760104 CrossRefGoogle Scholar
  11. Erdogan Y (2009) Some physiological characteristics of honeybee housed in heated fan wooden and insulated beehives. J Anim Vetinary Adv 8(8):1516–1519Google Scholar
  12. Erickson EH (1990) Stress and honey bees. Gleanings Bee Cult 118(11):650–654Google Scholar
  13. Even N, Devaud J-M, Barron AB (2012) General stress responses in the honey bee. Insects 3:1271–1298. doi: 10.3390/insects3041271 CrossRefGoogle Scholar
  14. Flores J.M. (2011) Temperature and climate in chalkbrood disease presentation to Coloss committee. Accessed 22 Jan 2014
  15. Flores JM et al (1996) Effect of temperature and humidity of sealed brood on chalkbrood development under controlled conditions. Apidologie 27(4):185–192. doi: 10.1051/apido:19960401 CrossRefGoogle Scholar
  16. Fornito L, Lee R, Tajchman SJ (1982) Heat transfer models for nesting cavities. J Arch Meteorol Geophys Bioclimatol 30(3):271–282. doi: 10.1007/BF02323367 CrossRefGoogle Scholar
  17. Franck P, Garnery L, Solignac M, Cornuet J-M (1998) The origin of west European subspecies of honeybees (Apis mellifera): new insights from microsatellite and mitochondrial data. Evolution 52(4):1119–1134. doi: 10.1002/ece3.312 CrossRefGoogle Scholar
  18. Free JB, Racey PA (1968) The effect of the size of honeybee colonies on food consumption, brood rearing and the longevity of the bees during winter. Ent Exp Appl 11:241–249CrossRefGoogle Scholar
  19. Furgalau B, McCrutcheon DM (1992) Wintering productive colonies. Hive HoneyBee 849Google Scholar
  20. Guzman-Novoa E, Eccles L, Yireli CY, Mcgowan J (2010) Varroa destructor is the main culprit for the death and reduced populations of overwintered honey bee (Apis mellifera) colonies in Ontario, Canada. Apidologie 41(4):443–450. doi: 10.1051/apido/2009076 CrossRefGoogle Scholar
  21. Hagenmaier RD, Shaw PE (1992) Gas permeability of fruit coating waxes. J Am Soc Hortic Sci 117(1):105–109Google Scholar
  22. Hossam FA (2012) Tolerance of two honey bee races to various temperature and relative humidity gradients. Env Exp Biol 10(4):133–138Google Scholar
  23. Huang Z (2012) Varroa mite reproductive biology. Am Bee J 140(10):981–985Google Scholar
  24. Human H, Nicolson W, Dietemann VV (2006) Do honeybees, Apis mellifera scutellata, regulate humidity in their nest? J Naturwissenschaften 93(8):397–401. doi: 10.1007/s00114-006-0117-y CrossRefGoogle Scholar
  25. Incropra, DeWitt, Bergman & Lavine (2006) Fundamentals of heat and mass transfer. WileyGoogle Scholar
  26. Kraus M, Kubečková D (2013) Airtightness of energy efficient buildings. 1st Ann Int Conf Archit Civil Eng 29–35. doi:  10.5176/2301-394X_ACE13.10
  27. Kraus B, Velthuis HHW (1997) High humidity in the honey bee (Apis mellifera L.) brood nest limits reproduction of the parasitic mite Varroa jacobsoni. Naturwissenschaften 84:217–218. doi: 10.1007/s001140050382 CrossRefGoogle Scholar
  28. Lawrence MG (2005) The relationship between relative humidity and the dewpoint temperature in moist air. Am Meterol Soc 86(2):225–233. doi: 10.1175/BAMS-86-2-225 CrossRefGoogle Scholar
  29. Lin YJ, Xu ZY (2013) Buoyancy-driven flows by a heat source at different levels. Int J Heat Mass Tran 58:312–321. doi: 10.1016/j.ijheatmasstransfer.2012.11.008 CrossRefGoogle Scholar
  30. Linden PF (1999) The fluid mechanics of natural ventilation. Ann Rev Fluid Mech 31:201–238. doi: 10.1146/annurev.fluid.31.1.20 CrossRefGoogle Scholar
  31. Mayack C, Naug D (2008) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100(3):185–188. doi: 10.1016/j.jip.2008.12.001 CrossRefGoogle Scholar
  32. Maziarz M, Wesołowski T (2013) Microclimate of tree cavities used by great tits (Parus major) in a primeval forest. Avian Biol Res 6(1):47–56. doi: 10.3184/175815513X13611994806259 CrossRefGoogle Scholar
  33. Microchip Inc (n.d.) TCN75A 2-Wire serial temperature sensor. Accessed 11 Jan 2004
  34. Mlakar J, Štrancar J (2013) Temperature and humidity profiles in passive-house building blocks. Build Environ 60:185–193. doi: 10.1016/j.buildenv.2012.11.018 CrossRefGoogle Scholar
  35. Olszewski K (2007) Winter-hardiness of buckfast bees under specific weather conditions of areas with alternating influences of maritime and continental climate. J Apic Sci 51(1):73–82Google Scholar
  36. Owens C (1971) The thermology of wintering honey bee colonies. US Agric Res Serv Tech Bull 1429Google Scholar
  37. Ptáček V (2000) How many individuals survive winter in intact colonies of Apis mellifera L. (Hymenoptera, Apidae)? Pszczelnicze Zesz Nauk 44(2):15–22Google Scholar
  38. Seeley TD (1985) Honeybee ecology. Princeton University Press, PrincetonGoogle Scholar
  39. Seeley TD, Morse RA (1976) The nest of the honey bee (Apis mellifera L.). Insect Soc 23:495–512. doi: 10.1007/BF02223477 CrossRefGoogle Scholar
  40. Simpson J (1961) Nest climate regulation in honey bee colonies. Science 3461:1331–1332. doi: 10.1126/science.133.3461.1327 Google Scholar
  41. Southwick EE (1982) Metabolic energy of intact honeybee colonies. Comp BIiochem Phys B 71(2):277–281. doi: 10.1016/0300-9629(82)90400-5 CrossRefGoogle Scholar
  42. Southwick EE (1985) Allometric relations, metabolism and heat conductance in clusters of honey bees at cool temperatures. J Comp Physiol B 156:143–149. doi: 10.1007/BF00692937 CrossRefGoogle Scholar
  43. Stabenthiener A (2010) Honeybee colony thermoregulation—regulatory mechanisms and contribution of individuals in dependence on age, location and thermal stress. PLoS One 5(1). doi:  10.1371/journal.pone.0008967
  44. Tamashbi GH (2009) The effect of temperature and humidity on grooming behaviour of honeybee. J Entomol Res Soc Iran 28:7–23Google Scholar
  45. The Forest Products Laboratory (2010) The wood handbook. Madison: USDA. pp. 4-1-4–19Google Scholar
  46. Thorkelson J, Maxwell RK (1974) Design and testing of a heat transfer model of a racoon (Procyon lotor) in a closed tree den. Ecology 55(1):29–39. doi: 10.2307/1934615 CrossRefGoogle Scholar
  47. Villa DJ (2009) Overwintering of Russian honey bees in northeastern Iowa. Sci Bee Cult 1(2):19–21Google Scholar
  48. Villumstad E (1974) Importance if hive insulation for wintering, development and honey yield in Norway. Apiacta 9:277–281Google Scholar
  49. Williams GR (2013) Standard methods for maintaining adult Apis mellifera in cages under in vitro laboratory conditions. J Apicult Res 52(1). doi:  10.3896/IBRA.

Copyright information

© ISB 2015

Authors and Affiliations

  1. 1.EigentekTadleyUK

Personalised recommendations