Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

Abstract

High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006–2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0–49 s m−3), moderate (50–99 s m−3), high (100–149 s m−3) and very high (150 < n s m−3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s  = 0.57 to r s  = 0.68).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Adams KF, Hyde HA, Williams DA (1968) Woodlands as a source of allergens. Acta Allergol 23:265–281

    CAS  Article  Google Scholar 

  2. Astray G, Rodríguez-Rajo FJ, Ferreiro-Lage JA, Fernández-González M, Jato V, Mejuto JC (2010) The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores. J Environ Monit 12:2145–2152

    CAS  Article  Google Scholar 

  3. Breiman L, Friedma JH, Olshen RA, Stone CG (1984) Classification and regression trees. Wadsworth, Belmont

    Google Scholar 

  4. Burke HB (1997) Evaluating artificial neural networks for medical applications. In: Proceeding book of International Conference on Neural Networks, Houston, pp. 2494–2495

  5. Cavan G, Alston E, Thornes J (2004) Worcestershire climate change impact study, Summary Report, Worcester County Council, Worcester

  6. Csépe Z, Makra L, Voukantsis D, Matyasovszky I, Tusnády G, Karatzas K, Thibaudon M (2014) Predicting daily ragweed pollen concentrations using Computational Intelligence techniques over two heavily polluted areas in Europe. Sci Total Environ 476–477:542–552

    Article  Google Scholar 

  7. Cutten AEC, Hasnain SM, Segedin BP, Bai TR, McKay EJ (1988) The basidiomycete Ganoderma and asthma: collection, quantification and immunogenicity of the spores. N Z Med J 101:361–363

    CAS  Google Scholar 

  8. De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:1105–1117

    Google Scholar 

  9. De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful and yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  10. DEFRA (2011) Maps of crop areas in 2000 and 2010 across England. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/183108/defra-stats-foodfarm-landuselivestock-june-detailedresults-cropmaps111125.pdf. Last Access 21 Apr 2013

  11. Fausett L (1994) Fundamentals of neural networks. Prentice Hall, New York

    Google Scholar 

  12. Galán C (2003) Basic statistics applied to aerobiology. Postępy Dermatologii i Alergologii 20:235–238

    Google Scholar 

  13. Gibbs J, Evans H (2000) Pests and diseases. In: Forest research annual report and accounts 1999–2000, Forest Research, London, pp. 11–18

  14. Gregory PH, Hirst JM (1952) Possible role of Basidiospores as air-borne allergens. Nature 170:414

    CAS  Article  Google Scholar 

  15. Grinn-Gofroń A, Strzelczak A (2008) Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland). Int J Biometeorol 52:859–868

    Article  Google Scholar 

  16. Grinn-Gofroń A, Strzelczak A (2011) The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air. Int J Biometeorol 55:235–241

    Article  Google Scholar 

  17. Grinn-Gofroń A, Strzelczak A (2013) Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int J Biometeorol 57:759–768

    Article  Google Scholar 

  18. Hasnain SM, Wilson JD, Newhook FJ, Segedin BP (1985) Allergy to Basidiospores: immunologic studies. N Z Med J 98:393–396

    CAS  Google Scholar 

  19. Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York

    Google Scholar 

  20. Herxheimer M, Hyde HA, Williams DA (1966) Allergic asthma caused by fungal spores. Lancet 1:572–573

    CAS  Article  Google Scholar 

  21. Herxheimer M, Hyde HA, Williams DA (1969) Allergic asthma caused by basidiospores. Lancet 2:131

    CAS  Article  Google Scholar 

  22. Hirst J (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  23. Horner WE, Helbling A, Lehrer SB (1993) Basidiomycete allergens: comparison of three Ganoderma species. Allergy 48:110–116

    CAS  Article  Google Scholar 

  24. Horner WE, Helbling A, Lehrer SB (1998) Basidiomycete allergens. Allergy 53:1114–1121

    CAS  Article  Google Scholar 

  25. Hyde HA (1972) Atmospheric pollen and spores in relation to allergy. I. Clin Allergy 2:153–179

    CAS  Article  Google Scholar 

  26. Hyde HA (1973) Atmospheric pollen and spores in relation to allergy. II. Clin Allergy 3:109–126

    CAS  Article  Google Scholar 

  27. Iglesias-Otero MA, Fernández-González M, Rodríguez-Caride D, Astray G, Mejuto JC, Rodríguez-Rajo FJ (2015) A model to forecast the risk periods of Plantago pollen allergy by using the ANN methodology. Aerobiologia 31(2):201–211. doi:10.1007/s10453-014-9357-z

    Article  Google Scholar 

  28. Jedryczka M, Strzelczak A, Grinn-Gofroń A, Nowak M, Wolski T, Siwulski M, Sobieralski K, Kaczmarek J (2015) Advanced statistical models commonly applied in aerobiology cannot accurately predict the exposure of people to Ganoderma spore-related allergies. Agric For Meteorol 201:209–217

    Article  Google Scholar 

  29. Jenkins PF, Mullins J, Davies BH, Williams DA (1981) The possible role of aero-allergens in the epidemic of asthma deaths. Clin Allergy 11:611–620

    CAS  Article  Google Scholar 

  30. Kasprzyk I, Grinn-Gofroń A, Strzelczak A, Wolski T (2011) Hourly predictive artificial neural network and multivariate regression trees models of Ganoderma spore concentrations in Rzeszów and Szczecin (Poland). J Sci Total Environ 409:949–956

    CAS  Article  Google Scholar 

  31. Khare M, Nagendra SMS (2007) Artificial Neural Networks in vehicular pollution modelling. Springer, Berlin

    Book  Google Scholar 

  32. Lacey J, Allitt U (1995) Airborne pollen and spores, a guide to trapping and counting, 1st edn. The British Aerobiology Federation, Harpenden

    Google Scholar 

  33. Larsen DR, Speckman PL (2004) Multivariate regression trees for analysis of abundance data. Biometrics 60:543–549

    Article  Google Scholar 

  34. Lehrer SB, Lopez M, Butcher BT, Olson J, Reed M, Salvaggio JE (1986) Basidiomycete mycelia and spore-allergen extracts: skin test reactivity in adults with symptoms of respiratory allergy. J Allergy Clin Immunol 78:478–485

    CAS  Article  Google Scholar 

  35. Lek S, Guégan J-F (2000) Artificial Neural Networks. Application to ecology and evolution. Springer, Berlin

    Google Scholar 

  36. Levetin E (1990) Studies on airborne basidiospores. Aerobiologia 6:177–180

    Article  Google Scholar 

  37. Li P, Flenley JR (1999) Pollen texture identification using neural networks. Grana 38:59–64

    CAS  Article  Google Scholar 

  38. McKay EJ (2011) Short rotation forestry, review on growth and environmental impacts. Forest Research Monograph 2. The Research Agency of the Forest Commission, Surrey, pp 1–211

    Google Scholar 

  39. Met Office, Midlands: Climate: http://www.metoffice.gov.uk/climate/uk/mi/print.html. Last Access 27 Mar 2013

  40. Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Article  Google Scholar 

  41. Oteros J, García-Mozo H, Hervás-Martínez C, Galán C (2013) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57:545–555

    CAS  Article  Google Scholar 

  42. Pegler DN, Young TWK (1973) Basidiospore form in the British species of Ganoderma Karst. Kew Bull 28:351–364

    Article  Google Scholar 

  43. Puc M (2012) Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 56:395–401

    Article  Google Scholar 

  44. Rice M (2011) Worcestershire demographic report 2011 with South Worcestershire Appendix. Worcestershire County Council, Worcester

    Google Scholar 

  45. Rivera-Mariani FE, Bolaños-Rosero B (2012) Allergenicity of airborne basidiospores and ascospores: need for further studies. Aerobiologia 28:83–97

    Article  Google Scholar 

  46. Rodríguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodríguez MV, Mejuto JC (2010) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23:419–425

    Article  Google Scholar 

  47. Rose D (2004) Path news. England and Wales Forest Research, Surrey, pp 1–2

    Google Scholar 

  48. Sadyś M, Skjøth CA, Kennedy R (2014) Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmos Environ 84:88–99

    Article  Google Scholar 

  49. Sadyś M, Strzelczak A, Grinn-Gofroń A, Kennedy R (2015) Application of redundancy analysis for aerobiological data. Int J Biometeorol 59:25–36

    Article  Google Scholar 

  50. Sánchez-Mesa JA, Galán C, Hervás C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Int J Biometeorol 49:355–362

    Article  Google Scholar 

  51. Scheifinger H, Belmonte J, Buters J, Celenk S, Damialis A, Dechamp C, García-Mozo H, Gehrig R, Grewling Ł, Halley JM, Hogda K-A, Jäger S, Karatzas K, Karlsen S-R, Koch E, Pauling A, Peel R, Šikoparija B, Smith M, Galán-Soldevilla C, Thibaudon M, Vokou D, de Weger LA (2013) Monitoring, modelling and forecasting of the pollen season. In: Sofiev M, Bergmann K-C (eds) Allergenic pollen: a review of the production, release, distribution and health impacts. Springer, Dordrecht, pp 71–126

    Chapter  Google Scholar 

  52. Shahin MA, Jaksa MB, Maier HM (2002) Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Aust Geomech 37:45–52

    Google Scholar 

  53. Singh AB, Gupta SK, Pereira BMJ, Prakash D (1995) Sensitization to Ganoderma lucidum in patients with respiratory allergy in India. Clin Exp Allergy 25:440–447

    CAS  Article  Google Scholar 

  54. Sprenger JD, Altman LC, O’Neil CE, Ayars GH, Butcher BT, Lehrer SB (1988) Prevalence of basidiospore allergy in the Pacific Northwest. J Allergy Clin Immunol 82:1076–1080

    CAS  Article  Google Scholar 

  55. Tarlo SM, Bell B, Srinivasan J, Dolovich J, Hargreave FE (1979) Human sensitization to Ganoderma antigen. J Allergy Clin Immunol 64(1):43–49

  56. Tomassetti B, Lombardi A, Cerasani E, Di Sabatino A, Pace L, Ammazzalorso D, Verdecchia M (2013) Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29:55–70

    Article  Google Scholar 

  57. Toro FJ, Recio M, Del Mar Trigo M, Cabezudo B (1998) Predictive models in aerobiology: data transformation. Aerobiologia 14:179–184

    Article  Google Scholar 

  58. Trigo del Mar M, Toro FJ, Recio M, Cabezudo B (2000) A statistical approach to comparing the results from different aerobiological stations. Grana 39:252–258

    Article  Google Scholar 

  59. Vijay HM, Comtois P, Sharma R, Lemieux R (1991) Allergenic components of Ganoderma applanatum. Grana 30:167–170

    Article  Google Scholar 

  60. von Storch H, Zwiers FW (1999) Statistical analysis in climate research. University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This study was conducted within the framework of doctoral studies of the first author, and jointly funded by the Graduate Research School and National Pollen and Aerobiology Research Unit at the University of Worcester.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sadyś.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 665 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sadyś, M., Skjøth, C.A. & Kennedy, R. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations. Int J Biometeorol 60, 489–498 (2016). https://doi.org/10.1007/s00484-015-1045-3

Download citation

Keywords

  • Fungal spore
  • Prediction model
  • Urban area
  • Meteorological parameter
  • Fungal allergy
  • Aerobiology