Skip to main content
Log in

Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

High concentration levels of Ganoderma spp. spores were observed in Worcester, UK, during 2006–2010. These basidiospores are known to cause sensitization due to the allergen content and their small dimensions. This enables them to penetrate the lower part of the respiratory tract in humans. Establishment of a link between occurring symptoms of sensitization to Ganoderma spp. and other basidiospores is challenging due to lack of information regarding spore concentration in the air. Hence, aerobiological monitoring should be conducted, and if possible extended with the construction of forecast models. Daily mean concentration of allergenic Ganoderma spp. spores in the atmosphere of Worcester was measured using 7-day volumetric spore sampler through five consecutive years. The relationships between the presence of spores in the air and the weather parameters were examined. Forecast models were constructed for Ganoderma spp. spores using advanced statistical techniques, i.e. multivariate regression trees and artificial neural networks. Dew point temperature along with maximum temperature was the most important factor influencing the presence of spores in the air of Worcester. Based on these two major factors and several others of lesser importance, thresholds for certain levels of fungal spore concentration, i.e. low (0–49 s m−3), moderate (50–99 s m−3), high (100–149 s m−3) and very high (150 < n s m−3), could be designated. Despite some deviation in results obtained by artificial neural networks, authors have achieved a forecasting model, which was accurate (correlation between observed and predicted values varied from r s  = 0.57 to r s  = 0.68).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams KF, Hyde HA, Williams DA (1968) Woodlands as a source of allergens. Acta Allergol 23:265–281

    Article  CAS  Google Scholar 

  • Astray G, Rodríguez-Rajo FJ, Ferreiro-Lage JA, Fernández-González M, Jato V, Mejuto JC (2010) The use of artificial neural networks to forecast biological atmospheric allergens or pathogens only as Alternaria spores. J Environ Monit 12:2145–2152

    Article  CAS  Google Scholar 

  • Breiman L, Friedma JH, Olshen RA, Stone CG (1984) Classification and regression trees. Wadsworth, Belmont

    Google Scholar 

  • Burke HB (1997) Evaluating artificial neural networks for medical applications. In: Proceeding book of International Conference on Neural Networks, Houston, pp. 2494–2495

  • Cavan G, Alston E, Thornes J (2004) Worcestershire climate change impact study, Summary Report, Worcester County Council, Worcester

  • Csépe Z, Makra L, Voukantsis D, Matyasovszky I, Tusnády G, Karatzas K, Thibaudon M (2014) Predicting daily ragweed pollen concentrations using Computational Intelligence techniques over two heavily polluted areas in Europe. Sci Total Environ 476–477:542–552

    Article  Google Scholar 

  • Cutten AEC, Hasnain SM, Segedin BP, Bai TR, McKay EJ (1988) The basidiomycete Ganoderma and asthma: collection, quantification and immunogenicity of the spores. N Z Med J 101:361–363

    CAS  Google Scholar 

  • De’ath G (2002) Multivariate regression trees: a new technique for modeling species-environment relationships. Ecology 83:1105–1117

    Google Scholar 

  • De’ath G, Fabricius KE (2000) Classification and regression trees: a powerful and yet simple technique for ecological data analysis. Ecology 81:3178–3192

    Article  Google Scholar 

  • DEFRA (2011) Maps of crop areas in 2000 and 2010 across England. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/183108/defra-stats-foodfarm-landuselivestock-june-detailedresults-cropmaps111125.pdf. Last Access 21 Apr 2013

  • Fausett L (1994) Fundamentals of neural networks. Prentice Hall, New York

    Google Scholar 

  • Galán C (2003) Basic statistics applied to aerobiology. Postępy Dermatologii i Alergologii 20:235–238

    Google Scholar 

  • Gibbs J, Evans H (2000) Pests and diseases. In: Forest research annual report and accounts 1999–2000, Forest Research, London, pp. 11–18

  • Gregory PH, Hirst JM (1952) Possible role of Basidiospores as air-borne allergens. Nature 170:414

    Article  CAS  Google Scholar 

  • Grinn-Gofroń A, Strzelczak A (2008) Artificial neural network models of relationships between Alternaria spores and meteorological factors in Szczecin (Poland). Int J Biometeorol 52:859–868

    Article  Google Scholar 

  • Grinn-Gofroń A, Strzelczak A (2011) The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air. Int J Biometeorol 55:235–241

    Article  Google Scholar 

  • Grinn-Gofroń A, Strzelczak A (2013) Changes in concentration of Alternaria and Cladosporium spores during summer storms. Int J Biometeorol 57:759–768

    Article  Google Scholar 

  • Hasnain SM, Wilson JD, Newhook FJ, Segedin BP (1985) Allergy to Basidiospores: immunologic studies. N Z Med J 98:393–396

    CAS  Google Scholar 

  • Haykin S (1994) Neural networks: a comprehensive foundation. Macmillan, New York

    Google Scholar 

  • Herxheimer M, Hyde HA, Williams DA (1966) Allergic asthma caused by fungal spores. Lancet 1:572–573

    Article  CAS  Google Scholar 

  • Herxheimer M, Hyde HA, Williams DA (1969) Allergic asthma caused by basidiospores. Lancet 2:131

    Article  CAS  Google Scholar 

  • Hirst J (1952) An automatic volumetric spore trap. Ann Appl Biol 39:257–265

    Article  Google Scholar 

  • Horner WE, Helbling A, Lehrer SB (1993) Basidiomycete allergens: comparison of three Ganoderma species. Allergy 48:110–116

    Article  CAS  Google Scholar 

  • Horner WE, Helbling A, Lehrer SB (1998) Basidiomycete allergens. Allergy 53:1114–1121

    Article  CAS  Google Scholar 

  • Hyde HA (1972) Atmospheric pollen and spores in relation to allergy. I. Clin Allergy 2:153–179

    Article  CAS  Google Scholar 

  • Hyde HA (1973) Atmospheric pollen and spores in relation to allergy. II. Clin Allergy 3:109–126

    Article  CAS  Google Scholar 

  • Iglesias-Otero MA, Fernández-González M, Rodríguez-Caride D, Astray G, Mejuto JC, Rodríguez-Rajo FJ (2015) A model to forecast the risk periods of Plantago pollen allergy by using the ANN methodology. Aerobiologia 31(2):201–211. doi:10.1007/s10453-014-9357-z

    Article  Google Scholar 

  • Jedryczka M, Strzelczak A, Grinn-Gofroń A, Nowak M, Wolski T, Siwulski M, Sobieralski K, Kaczmarek J (2015) Advanced statistical models commonly applied in aerobiology cannot accurately predict the exposure of people to Ganoderma spore-related allergies. Agric For Meteorol 201:209–217

    Article  Google Scholar 

  • Jenkins PF, Mullins J, Davies BH, Williams DA (1981) The possible role of aero-allergens in the epidemic of asthma deaths. Clin Allergy 11:611–620

    Article  CAS  Google Scholar 

  • Kasprzyk I, Grinn-Gofroń A, Strzelczak A, Wolski T (2011) Hourly predictive artificial neural network and multivariate regression trees models of Ganoderma spore concentrations in Rzeszów and Szczecin (Poland). J Sci Total Environ 409:949–956

    Article  CAS  Google Scholar 

  • Khare M, Nagendra SMS (2007) Artificial Neural Networks in vehicular pollution modelling. Springer, Berlin

    Book  Google Scholar 

  • Lacey J, Allitt U (1995) Airborne pollen and spores, a guide to trapping and counting, 1st edn. The British Aerobiology Federation, Harpenden

    Google Scholar 

  • Larsen DR, Speckman PL (2004) Multivariate regression trees for analysis of abundance data. Biometrics 60:543–549

    Article  Google Scholar 

  • Lehrer SB, Lopez M, Butcher BT, Olson J, Reed M, Salvaggio JE (1986) Basidiomycete mycelia and spore-allergen extracts: skin test reactivity in adults with symptoms of respiratory allergy. J Allergy Clin Immunol 78:478–485

    Article  CAS  Google Scholar 

  • Lek S, Guégan J-F (2000) Artificial Neural Networks. Application to ecology and evolution. Springer, Berlin

    Google Scholar 

  • Levetin E (1990) Studies on airborne basidiospores. Aerobiologia 6:177–180

    Article  Google Scholar 

  • Li P, Flenley JR (1999) Pollen texture identification using neural networks. Grana 38:59–64

    Article  CAS  Google Scholar 

  • McKay EJ (2011) Short rotation forestry, review on growth and environmental impacts. Forest Research Monograph 2. The Research Agency of the Forest Commission, Surrey, pp 1–211

    Google Scholar 

  • Met Office, Midlands: Climate: http://www.metoffice.gov.uk/climate/uk/mi/print.html. Last Access 27 Mar 2013

  • Nilsson S, Persson S (1981) Tree pollen spectra in the Stockholm region (Sweden), 1973–1980. Grana 20:179–182

    Article  Google Scholar 

  • Oteros J, García-Mozo H, Hervás-Martínez C, Galán C (2013) Year clustering analysis for modelling olive flowering phenology. Int J Biometeorol 57:545–555

    Article  CAS  Google Scholar 

  • Pegler DN, Young TWK (1973) Basidiospore form in the British species of Ganoderma Karst. Kew Bull 28:351–364

    Article  Google Scholar 

  • Puc M (2012) Artificial neural network model of the relationship between Betula pollen and meteorological factors in Szczecin (Poland). Int J Biometeorol 56:395–401

    Article  Google Scholar 

  • Rice M (2011) Worcestershire demographic report 2011 with South Worcestershire Appendix. Worcestershire County Council, Worcester

    Google Scholar 

  • Rivera-Mariani FE, Bolaños-Rosero B (2012) Allergenicity of airborne basidiospores and ascospores: need for further studies. Aerobiologia 28:83–97

    Article  Google Scholar 

  • Rodríguez-Rajo FJ, Astray G, Ferreiro-Lage JA, Aira MJ, Jato-Rodríguez MV, Mejuto JC (2010) Evaluation of atmospheric Poaceae pollen concentration using a neural network applied to a coastal Atlantic climate region. Neural Netw 23:419–425

    Article  Google Scholar 

  • Rose D (2004) Path news. England and Wales Forest Research, Surrey, pp 1–2

    Google Scholar 

  • Sadyś M, Skjøth CA, Kennedy R (2014) Back-trajectories show export of airborne fungal spores (Ganoderma sp.) from forests to agricultural and urban areas in England. Atmos Environ 84:88–99

    Article  Google Scholar 

  • Sadyś M, Strzelczak A, Grinn-Gofroń A, Kennedy R (2015) Application of redundancy analysis for aerobiological data. Int J Biometeorol 59:25–36

    Article  Google Scholar 

  • Sánchez-Mesa JA, Galán C, Hervás C (2005) The use of discriminant analysis and neural networks to forecast the severity of the Poaceae pollen season in a region with a typical Mediterranean climate. Int J Biometeorol 49:355–362

    Article  Google Scholar 

  • Scheifinger H, Belmonte J, Buters J, Celenk S, Damialis A, Dechamp C, García-Mozo H, Gehrig R, Grewling Ł, Halley JM, Hogda K-A, Jäger S, Karatzas K, Karlsen S-R, Koch E, Pauling A, Peel R, Šikoparija B, Smith M, Galán-Soldevilla C, Thibaudon M, Vokou D, de Weger LA (2013) Monitoring, modelling and forecasting of the pollen season. In: Sofiev M, Bergmann K-C (eds) Allergenic pollen: a review of the production, release, distribution and health impacts. Springer, Dordrecht, pp 71–126

    Chapter  Google Scholar 

  • Shahin MA, Jaksa MB, Maier HM (2002) Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Aust Geomech 37:45–52

    Google Scholar 

  • Singh AB, Gupta SK, Pereira BMJ, Prakash D (1995) Sensitization to Ganoderma lucidum in patients with respiratory allergy in India. Clin Exp Allergy 25:440–447

    Article  CAS  Google Scholar 

  • Sprenger JD, Altman LC, O’Neil CE, Ayars GH, Butcher BT, Lehrer SB (1988) Prevalence of basidiospore allergy in the Pacific Northwest. J Allergy Clin Immunol 82:1076–1080

    Article  CAS  Google Scholar 

  • Tarlo SM, Bell B, Srinivasan J, Dolovich J, Hargreave FE (1979) Human sensitization to Ganoderma antigen. J Allergy Clin Immunol 64(1):43–49

  • Tomassetti B, Lombardi A, Cerasani E, Di Sabatino A, Pace L, Ammazzalorso D, Verdecchia M (2013) Mapping of Alternaria and Pleospora concentrations in Central Italy using meteorological forecast and neural network estimator. Aerobiologia 29:55–70

    Article  Google Scholar 

  • Toro FJ, Recio M, Del Mar Trigo M, Cabezudo B (1998) Predictive models in aerobiology: data transformation. Aerobiologia 14:179–184

    Article  Google Scholar 

  • Trigo del Mar M, Toro FJ, Recio M, Cabezudo B (2000) A statistical approach to comparing the results from different aerobiological stations. Grana 39:252–258

    Article  Google Scholar 

  • Vijay HM, Comtois P, Sharma R, Lemieux R (1991) Allergenic components of Ganoderma applanatum. Grana 30:167–170

    Article  Google Scholar 

  • von Storch H, Zwiers FW (1999) Statistical analysis in climate research. University Press, Cambridge

    Book  Google Scholar 

Download references

Acknowledgments

This study was conducted within the framework of doctoral studies of the first author, and jointly funded by the Graduate Research School and National Pollen and Aerobiology Research Unit at the University of Worcester.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magdalena Sadyś.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 665 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sadyś, M., Skjøth, C.A. & Kennedy, R. Forecasting methodologies for Ganoderma spore concentration using combined statistical approaches and model evaluations. Int J Biometeorol 60, 489–498 (2016). https://doi.org/10.1007/s00484-015-1045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-1045-3

Keywords

Navigation