Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body

Abstract

Combining the strengths of an advanced mathematical model of human physiology and a thermal manikin is a new paradigm for simulating thermal behaviour of humans. However, the forerunners of such adaptive manikins showed some substantial limitations. This project aimed to determine the opportunities and constraints of the existing thermal manikins when dynamically controlled by a mathematical model of human thermal physiology. Four thermal manikins were selected and evaluated for their heat flux measurement uncertainty including lateral heat flows between manikin body parts and the response of each sector to the frequent change of the set-point temperature typical when using a physiological model for control. In general, all evaluated manikins are suitable for coupling with a physiological model with some recommendations for further improvement of manikin dynamic performance. The proposed methodology is useful to improve the performance of the adaptive manikins and help to provide a reliable and versatile tool for the broad research and development domain of clothing, automotive and building engineering.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Anttonen H et al (2004) Thermal manikin measurements—exact or not? Int J Occup Saf Ergon 10:291–300

    Article  Google Scholar 

  2. ASTM F1291-05 (2005) Standard test method for measuring the thermal insulation of clothing using a heated manikin. ASTM International, West Conshohocken

  3. ASTM F2370-10 (2010) Standard test method for measuring the evaporative resistance of clothing using a sweating manikin. ASTM International, West Conshohocken

  4. Blood K, Burke R (2010) Further validation of the model-controlled Newton thermal manikin against historical human studies. Paper presented at the 8th International Meeting for Manikins and Modelling, Victoria, Canada, pp 22–26

    Google Scholar 

  5. Bouskill LM, Havenith G, Kuklane K, Parsons KC, Withey WR (2002) Relationship between clothing ventilation and thermal insulation. Aihaj 63:262–268. doi:10.1080/15428110208984712

    CAS  Article  Google Scholar 

  6. Burke R, Curran A, Hepokoski M (2009) Integrating an active physiological and comfort model to the Newton sweating thermal manikin. Paper presented at the International Conference on Environmental Ergonomics, Boston, USA, pp 2–7

    Google Scholar 

  7. Curran A, Peck S, Hepokoski M, Burke R (2014) Physiological model control of a sweating thermal manikin. Paper presented at the 10th Manikin and Modelling Meeting, Tampere, Finland, pp 7–9

    Google Scholar 

  8. Fan JT, Qian XM (2004) New functions and applications of Walter, the sweating fabric manikin. Eur J Appl Physiol 92:641–644. doi:10.1007/s00421-004-1134-1

    Article  Google Scholar 

  9. Farrington R, Rugh J, Bharathan D, Burke R (2004) Use of a thermal manikin to evaluate human thermoregulatory responses in transient, non-uniform, thermal environments Society of Automotive Engineers International 2004-01-2345

  10. Fiala D, Havenith G, Broede P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56:429–441. doi:10.1007/s00484-011-0424-7

    Article  Google Scholar 

  11. Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions: the passive system. J Appl Physiol 87:1957–1972

    CAS  Google Scholar 

  12. Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45:143–159. doi:10.1007/s004840100099

    CAS  Article  Google Scholar 

  13. Foda E, Siren K (2012a) Design strategy for maximizing the energy-efficiency of a localized floor-heating system using a thermal manikin with human thermoregulatory control. Energy Build 51:111–121. doi:10.1016/j.enbuild.2012.04.019

    Article  Google Scholar 

  14. Foda E, Siren K (2012b) A thermal manikin with human thermoregulatory control: implementation and validation. Int J Biometeorol 56:959–971. doi:10.1007/s00484-011-0506-6

    Article  Google Scholar 

  15. Gao C, Kuklane K, Wang F, Holmer I (2012) Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective. Indoor Air 22:523–530. doi:10.1111/j.1600-0668.2012.00778.x

    CAS  Article  Google Scholar 

  16. Havenith G et al (2008) Apparent latent heat of evaporation from clothing: attenuation and “heat pipe” effects. J Appl Physiol 104:142–149. doi:10.1152/japplphysiol.00612.2007

    Article  Google Scholar 

  17. Havenith G et al (2013) Evaporative cooling: effective latent heat of evaporation in relation to evaporation distance from the skin. J Appl Physiol 114:778–785. doi:10.1152/japplphysiol.01271.2012

    Article  Google Scholar 

  18. Holmer I, Nilsson H (1995) Heated manikins as a tool for evaluating clothing. Ann Occup Hyg 39:809–818. doi:10.1016/0003-4878(95)00041-0

    Article  Google Scholar 

  19. ISO9920 (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble.

  20. ISO15831 (2004) Clothing-physiological effects—measurement of thermal insulation by means of a thermal manikin.

  21. Keiser C, Becker C, Rossi RM (2008) Moisture transport and absorption in multilayer protective clothing fabrics. Text Res J 78:604–613. doi:10.1177/0040517507081309

    CAS  Article  Google Scholar 

  22. Konarska M, Soltynski K, Sudol-Szopinska I, Chojnacka A (2007) Comparative evaluation of clothing thermal insulation measured on a thermal manikin and on volunteers. Fibres Text East Eur 15:73–79

    CAS  Google Scholar 

  23. Kuklane K, Heidmets S, Johansson T (2006) Improving thermal comfort in an orthopaedic aid: better Boston brace for scoliosis patients. Paper presented at 6th International Thermal Manikin and Modelling Meeting, Hong Kong, China, 2006. pp 345–346

  24. McCullough EA The use of thermal manikins to evaluate clothing and environmental factors. Paper presented at 10th Conference on Environmental Ergonomics, Fukuoka, Japan, 2002. pp 427–430

  25. McCullough EA, Jones B, Huck J (1985) A comprehensive database for estimating clothing insulation. ASHRAE Transactions 91:29–47

    Google Scholar 

  26. Niedermann R, Psikuta A, Rossi RM (2014) Heat flux measurements for use in physiological and clothing research. Int J Biometeorol 58:1069–1075. doi:10.1007/s00484-013-0697-0

    CAS  Article  Google Scholar 

  27. Nilsson HO (2004) Comfort climate evaluation with thermal manikin methods and computer simulation models. University of Gävle and the Swedish National Institute for Working Life

  28. Psikuta A (2009) Development of an ‘artificial human’ for clothing research. De Montfort University

  29. Psikuta A et al (2012) Validation of the Fiala multi-node thermophysiological model for UTCI application. Int J Biometeorol 56:443–460. doi:10.1007/s00484-011-0450-5

    Article  Google Scholar 

  30. Psikuta A, Niedermann R, Rossi RM (2014) Effect of ambient temperature and attachment method on surface temperature measurements. Int J Biometeorol 58:877–885. doi:10.1007/s00484-013-0669-4

    Article  Google Scholar 

  31. Psikuta A, Richards M, Fiala D (2008) Single-sector thermophysiological human simulator. Physiol Meas 29:181–192. doi:10.1088/0967-3334/29/2/002

    Article  Google Scholar 

  32. Psikuta A, Wang L-C, Rossi RM (2013) Prediction of the physiological response of humans wearing protective clothing using a thermophysiological human simulator. J Occup Environ Hyg 10:222–232. doi:10.1080/15459624.2013.766562

    Article  Google Scholar 

  33. Redortier B, Voelcker T (2010) Implementation of thermo-physiological control on a multi-zone manikin. Paper presented at the 8th Manikin and Modelling Meeting, Victoria, BC, Canada, pp 22–26

    Google Scholar 

  34. Richards MGM, McCullough EA (2005) Revised interlaboratory study of sweating thermal manikins including results from the sweating agile thermal manikin. Performance of Protective Clothing: Global Needs and Emerging Markets: 8th Symposium. doi:10.1520/stp12595s

  35. Rintamaki H (2007) Human responses to cold. Alaska Med 49:29–31

    Google Scholar 

  36. Tanabe S, Arens EA, Bauman FS, Zang H, Madsen TL (1994) Evaluating thermal environments by using a thermal manikin with controlled skin surface temperature. ASHRAE Transactions 100:39–48

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Matthew Morrissey from Empa for the fruitful discussions on improving the calibration protocol for the manikin SAM and consultation on scientific English writing.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Agnes Psikuta.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Psikuta, A., Kuklane, K., Bogdan, A. et al. Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body. Int J Biometeorol 60, 435–446 (2016). https://doi.org/10.1007/s00484-015-1041-7

Download citation

Keywords

  • Sweat Rate
  • Physiological Model
  • Heat Flux Measurement
  • Thermal Manikin
  • Individual Body Part