Skip to main content
Log in

Environmental risk factors and hotspot analysis of dengue distribution in Pakistan

International Journal of Biometeorology Aims and scope Submit manuscript

Cite this article

Abstract

This study is an attempt to find out the factors responsible for sudden dengue outbreak in different cities of Pakistan during 2011. For this purpose, spatio-temporal distribution of dengue in Islamabad, Rawalpindi, Lahore, and Karachi has been taken into account. According to the available data, the factors responsible for this spread includes climate covariates like rainfall, temperature, and wind speed; social covariates like population, and area of locality, and environmental risk factors like drainage pattern and geo-hydrological conditions. Reported dengue cases from localities and Shuttle Radar Topography Mission (SRTM) 90 m digital elevation model (DEM) of study areas have been processed for hotspots, regression model and stream density in the localities of high dengue incidence. The relationship of daily dengue incidence with climate covariates during the months of July–October of the study year is analyzed. Results show that each dry spell of 2–4 days provides suitable conditions for the development and survival of dengue vectors during the wet months of July and August in the areas of high stream density and population. Very few cases have been reported in July while higher number of cases reported in the months of August, September, until late October. Hotspot analysis highlights the areas of high dengue incidence while regression analysis shows the relationship between the population and the areas of localities with the dengue incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

References

  • Climate of Pakistan (2011) Report by National Drought Monitoring Center. Pakistan Meteorological Department

  • Cox J, Grillet ME, Ramos OM, Amador M, Barrera R (2007) Habitat segregation of dengue vectors along an urban environmental gradient. Am J Trop Med Hyg 76:820–826

    Google Scholar 

  • Chowell G, Sanchez F (2006) Climate-based descriptive models of dengue fever. J Environ Health 68:60–63

    Google Scholar 

  • Chan YC, Salahuddin NI, Khan J, Tan HC, Seah CL, Li J (1994) Dengue hemorrhagic fever outbreak in Karachi, Pakistan. Trans R Soc Trop Med Hyg 89:619–620

    Article  Google Scholar 

  • Edillo FE, Touré YT, Lanzaro GC, Dolo G, Taylor CE (2004) Survivorship and distribution of immature Anopheles gambiae. (Diptera: Culicidae) in Banambani Village, Mali. J Med Entomol 41:333–339

    Article  Google Scholar 

  • Fatima Z, Idrees M, Bajwa MA, Tahir Z, Ullah O, Zia MQ, Hussain A, Akram M, Khubaib B, Afzal S, Munir S, Saleem S, Rauff B, Badar S, Naudhani M, Butt S, Aftab M, Ali L, Ali M (2011) Serotype and genotype analysis of dengue virus by sequencing followed by phylogenetic analysis using samples from three mini outbreaks-2007–2009 in Pakistan. BMC Microbiol 10:200–203

    Article  Google Scholar 

  • Favier C, Degallier N, Dubois MA (2005) Dengue epidemic modelling: stakes and pitfalls. Asia Pac Biotechnol News 9:1191–1194

    Google Scholar 

  • Gemperli A, Sogoba N, Fondjo E, Mabaso M, Bagayoko M, Briët OJT, Anderegg D, Liebe J, Smith T, Vounatsou P (2006) Mapping malaria transmission in West and Central Africa. Trop Med Int Health 11:1032–1046

    Article  Google Scholar 

  • Guerra CA, Snow RW, Hay SI (2006) Mapping the global extent of malaria in 2005. Trends Parasitol 22:353–358

    Article  Google Scholar 

  • Gubler DJ (2002) Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol 10(2):100–103

    Article  CAS  Google Scholar 

  • Guthmann JP, Hall AJ, Jaffar S, Palacios A, Lines J, Llanos- Cuentas A (2001) Environmental risk factors for clinical malaria: a case–control study in the Grau Region of Peru. Trans R Soc Trop Med Hyg 95:1–7

    Article  Google Scholar 

  • Githeko AK, Lindsay SW, Confalonieri UE, Patz JA (2000) Climate change and vector-borne diseases: a regional analysis. Bull World Health Organ 78:1136–1147

    CAS  Google Scholar 

  • Humayoun MA, Waseem T, Jawa AA, Hashmi MS, Akram J (2010) Multiple dengue serotypes and high frequency of dengue hemorrhagic fever at two tertiary care hospitals in Lahore during the 2008 dengue virus outbreak in Punjab, Pakistan. Int J Infect Dis 14:54–59

    Article  Google Scholar 

  • Halstead SB (2008) Dengue virus-mosquito interactions. Rev Entomol 53:273–291

    Article  CAS  Google Scholar 

  • Hakre S, Masuoka P, Vanzie E, Roberts RD (2004) Spatial correlations of mapped malaria rates with environmental factors in Belize, Central America. Int J Health Geogr 3:6–17

    Article  Google Scholar 

  • Jetten TH, Focks DA (1997) Potential changes in the distribution of dengue transmission under climate warming. Am J Trop Med Hyg 57:285–297

    CAS  Google Scholar 

  • Khalid B, Ghaffar A (2015) Dengue transmission based on urban environmental gradients in different cities of Pakistan. Int J Biometeorol 59:267–283

    Article  Google Scholar 

  • Keiser J, Singer BH, Utzinger J (2005) Reducing the burden of malaria in different eco-epidemiological settings with environmental management: a systematic review. Lancet Infect Dis 5:695–708

    Article  Google Scholar 

  • Knap A, Dewailly E, Furgal C, Galvin J, Baden D, Bowen RE, Depledge M, Duguay L, Fleming LE, Ford T, Moser F, Owen R, Suk WA, Unluata U (2002) Indicators of ocean health and human health: developing a research and monitoring framework. Environ Health Perspect 110:839–845

    Article  CAS  Google Scholar 

  • Liu-Helmersson J, Stenlund H, Wilder-Smith A, Rocklov J (2014) Vectorial capacity of Aedes aegypti: effects of temperature and implications for global dengue epidemic potential. PLoS ONE 9(3):e89783. doi:10.1371/journal.pone.0089783

    Article  Google Scholar 

  • Olson SH, Gangnon R, Elguero E, Durieux L, Guégan JF, Foley JA, Patz JA (2009) Links between climate, malaria and wetlands in the Amazon Basin. Emerg Infect Dis 15:659–662

    Article  Google Scholar 

  • Oesterholt MJAM, Bousema JT, Mwerinde OK, Harris C, Lushino P, Masokoto A, Mwerinde H, Mosha FW, Drakeley CJ (2006) Spatial and temporal variation in malaria transmission in a low endemicity area in northern Tanzania. Malar J 5:98

    Article  CAS  Google Scholar 

  • Smith MW, Macklin MG, Thomas CJ (2013) Hydrological and geomorphological controls of malaria transmission. Earth Sci Rev 116:109–127

    Article  Google Scholar 

  • Utzinger J, Tozan Y, Singer BH (2001) Efficacy and cost effectiveness of environmental management for malaria control. Trop Med Int Health 6:677–687

    Article  CAS  Google Scholar 

  • Van der Hoek W, Konradsen F, Amerasinghe PH, Perera D, Piyaratne MK, Amerasinghe FP (2003) Towards a risk map of malaria for Sri Lanka: the importance of house location relative to vector breeding sites. Int J Epidemiol 32:280–285

    Article  Google Scholar 

  • World Health Organization (2012) International travel and health: situation as on 1 January 2012. World Health Organization

  • World Health Organization (2009) Epidemiology, burden of disease and transmission. In Dengue: Guidelines for diagnosis, treatment, prevention and control. World Health Organization, Geneva, 1–21

  • Wu P, Guo H, Lung S, Lin C, Su H (2007) Weather as an effective predictor for occurrence of dengue fever in Taiwan. Acta Trop 103:50–57

    Article  Google Scholar 

  • Wolff M (2002) Concepts and approaches for marine ecosystem research with reference to the tropics. Rev Biol Trop 50:395–414

    Google Scholar 

  • Yang HM, Macoris ML, Galvani KC, Andrighetti MT, Wanderley DM (2009) Assessing the effects of temperature on the population of Aedes aegypti, the vector of dengue. Epidemiol Infect 137:1188–1202

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the National Institute of Health (NIH) Islamabad, Government of the Punjab (GoP), National Institute of Populational Studies (NIPS), and Pakistan Meteorological Department (PMD) for providing the important data necessary for this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdul Ghaffar.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalid, B., Ghaffar, A. Environmental risk factors and hotspot analysis of dengue distribution in Pakistan. Int J Biometeorol 59, 1721–1746 (2015). https://doi.org/10.1007/s00484-015-0982-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-0982-1

Keywords

Navigation