Skip to main content
Log in

Thermal conditions in freezing chambers and prediction of the thermophysiological responses of workers

  • Original Paper
  • Published:
International Journal of Biometeorology Aims and scope Submit manuscript

Abstract

The present work is dedicated to the assessment of the cold thermal strain of human beings working within freezing chambers. To obtain the present results, both field measurements and a numerical procedure based on a modified version of the Stolwijk thermoregulation model were used. Eighteen freezing chambers were considered. A wide range of physical parameters of the cold stores, the workers clothing insulation, and the working and recovering periods were observed. The combination of these environmental and individual parameters lead to different levels of thermal stress, which were grouped under three categories. Some good practices were observed in the field evaluations, namely situations with appropriate level of clothing protection and limited duration of exposure to cold avoiding unacceptable level of hypothermia. However, the clothing ensembles normally used by the workers do not provide the minimum required insulation, which suggests the possibility of the whole body cooling for levels higher than admissible. The numerical predictions corroborate the main conclusions of the field survey. The results obtained with both methodologies clearly show that, for the low temperature of the freezing chambers, the clothing insulation is insufficient, the exposure periods are too long, and the recovering periods are inadequate. Thus, high levels of physiological strain can indeed be reached by human beings under such working environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barroso MP, Arezes PM, da Costa LG, Miguel AS (2005) Anthropometric study of Portuguese workers. Int J Ind Ergon 35:401–410. doi:10.1016/j.ergon.2004.10.005

    Article  Google Scholar 

  • Chen F, Li T, Huang H, Holmér I (1991) A field study of cold effects among cold store workers in China. Arctic Med Res 50(6):99–103

    Google Scholar 

  • Cheung SS, Daanen AM (2012) Dynamic adaptation of the peripheral circulation to cold exposure. Microcirculation 19(1):65–77. doi:10.1111/j.1549-8719.2011.00126.x

    Article  Google Scholar 

  • Cortili G, Mognoni P, Saibene F (1996) Work tolerance and physiological responses to thermal environment wearing protective NBC clothing. Ergonomics 39:620–633. doi:10.1080/00140139608964485

    Article  CAS  Google Scholar 

  • Daanen HAM (2009) Manual performance deterioration in the cold estimated using the wind chill equivalent temperature. Ind Health 47:262–270. doi:10.2486/indhealth.47.262

    Article  Google Scholar 

  • Daviskas E, Gonda I, Anderson SD (1990) Mathematical modeling of heat and water transport in human respiratory tract. J Appl Physiol 69:362–372

    CAS  Google Scholar 

  • Enander A, Ljungberg A-S, Holmér I (1979) Effects of work in cold stores on man. Scand J Work Environ Health 5:195–204. doi:10.5271/sjweh.3093

    Article  CAS  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (1999) A computer model of human thermoregulation for a wide range of environmental conditions—the passive system. J Appl Physiol 87: 1957–1972. http://www.jappl.org/content/87/5/1957.full.pdf+html

  • Fiala D, Lomas KJ, Stohrer M (2001) Computer prediction of human thermoregulatory and temperature responses to a wide range of environmental conditions. Int J Biometeorol 45(3):143–159. doi:10.1007/s004840100099

    Article  CAS  Google Scholar 

  • Golbabaei F, Sajjadi M-H, Jelyani KN, Akbar-Khanzadeh F (2009) Assessment of cold stress and its effects on workers in a cold-storage warehouse. Int J Occup Hyg 1(1):9–13. http://journals.tums.ac.ir/upload_files/pdf/_/14131.pdf

  • Griefahn B (2000) Limits and possibilities to improve the IREQ cold stress model (ISO/TR 11079)—a validation study in the field. Appl Ergon 31:423–431. doi:10.1016/S0003-6870(99)00059-9

    Article  CAS  Google Scholar 

  • Havenith G, Heus R, Daanen HA (1995) The hand in the cold, performance and risk. Arctic Med Res 54:37–47

    Google Scholar 

  • Havenith G, Holmér I, Parsons K (2002) Personal factors in thermal comfort assessment: clothing properties and metabolic heat production. Energy Build 34:581–591. doi:10.1016/S0378-7788(02)00008-7

    Article  Google Scholar 

  • Holmér I (1984) Required clothing insulation (IREQ) as an analytical index of cold stress. ASHRAE Trans 90:1116–1128

    Google Scholar 

  • Holmér I (1998) Evaluation of thermal stress in cold regions—a strain assessment strategy. In: Holmér I and Kuklane K (eds), Proceedings from International Symposium on Problems with Cold Work, 16–20 November 1997, Stockholm, Sweden, pp 31–38. http://gupea.ub.gu.se/dspace/bitstream/2077/4185/1/ah1998_18.pdf#page=40

  • Holmér I (2009) Evaluation of cold workplaces—an overview of standards for assessment of cold stress. Ind Health 47:228–234. doi:10.2486/indhealth.47.228

    Article  Google Scholar 

  • Horvath SM (1981) Exercise in a cold environment. Exerc Sports Sci Rev 9:221–263

    CAS  Google Scholar 

  • Huizenga C, Hui Z, Arens E (2001) A model of human physiology and comfort for assessing complex thermal environments. Build Environ 36:691–699. doi:10.1016/S0360-1323(00)00061-5

    Article  Google Scholar 

  • ISO 11079 (2007) Ergonomics of the thermal environment—determination and interpretation of cold stress when using required clothing insulation (IREQ) and local cooling effects. International Standards Organization, Geneva

    Google Scholar 

  • ISO 15743 (2008) Ergonomics of the thermal environment—cold workplaces—risk assessment and management. International Standards Organization, Geneva

    Google Scholar 

  • ISO 7726 (1998) Ergonomics of the thermal environment—instruments for measuring physical quantities. International Standards Organization, Geneva

    Google Scholar 

  • ISO 8996 (2004) Ergonomics of the thermal environment—determination of metabolic rate. International Standards Organization, Geneva

    Google Scholar 

  • ISO 9920 (2007) Ergonomics of the thermal environment—estimation of the thermal insulation and water vapour resistance of a clothing ensemble. International Standards Organization, Geneva

    Google Scholar 

  • Kim TG, Tochihara Y, Fujita M, Hashiguchi N (2007) Physiological responses and performance of loading work in a severely cold environment. Int J Ind Ergon 37:725–732. doi:10.1016/j.ergon.2007.05.009

    Article  Google Scholar 

  • Konz S, Hwang C, Dhiman B, Duncan J, Masud A (1977) An experimental validation of mathematical simulation of human thermoregulation. Comp Biol Med 7:71–82. doi:10.1016/0010-4825(77)90007-5

    Article  CAS  Google Scholar 

  • Larsson K, Tornling G, Gavhed D, Müller-Suur C, Palmberg L (1998) Inhalation of cold air increases the number of inflammatory cells in the lungs in healthy subjects. Eur Respir J 12:825–830. doi:10.1183/09031936.98.12040825

    Article  CAS  Google Scholar 

  • Mäkinen TM, Hassi J (2009) Health problems in cold work. Ind Health 47:207–220. doi:10.2486/indhealth.47.207

    Article  Google Scholar 

  • Mäkinen TM, Palinkas LA, Reeves DL, Pääkkönen T, Rintamäki H, Leppäluoto J, Hassi J (2006) Effect of repeated exposures to cold on cognitive performance in humans. Physiol Behav 87:166–176. doi:10.1016/j.physbeh.2005.09.015

    Article  Google Scholar 

  • McFadden ER Jr, Denison DM, Waller JF, Assoufi B, Peacock A, Sopwith T (1982) Direct recordings of the temperatures in the tracheobronchial tree in normal man. J Clin Invest 69:700–705. doi:10.1172/JCI110498

    Article  Google Scholar 

  • Nielsen R (1998) Characteristics of cold workplaces in Denmark. In: Holmér I and Kuklane K (eds), Proceedings from International Symposium on Problems with Cold Work, 16–20 November 1997, Stockholm, Sweden, pp 16–18

  • Oliveira AVM, Gaspar AR, Quintela DA (2008a) Occupational exposure to cold thermal environments—a field study in Portugal. Eur J Appl Physiol 104(2):207–214. doi:10.1007/s00421-007-0630-5

    Article  Google Scholar 

  • Oliveira AVM, Gaspar AR, Quintela DA (2008b) Measurements of clothing insulation with a thermal manikin operating under the thermal comfort regulation mode: comparative analysis of the calculation methods. Eur J Appl Physiol 104(4):679–688. doi:10.1007/s00421-008-0824-5

    Article  Google Scholar 

  • Oliveira AVM, Gaspar AR, Quintela DA (2011) Dynamic clothing insulation. Measurements with a thermal manikin operating under the thermal comfort regulation mode. Appl Ergon 42(6):890–899. doi:10.1016/j.apergo.2011.02.005

    Article  Google Scholar 

  • Oliveira AVM, Gaspar AR, André JS, Quintela DA (2014a) Subjective analysis of cold thermal environments. Appl Ergon 45(3):534–543. doi:10.1016/j.apergo.2013.07.013

    Article  Google Scholar 

  • Oliveira AVM, Gaspar AR, Raimundo AM, Quintela DA (2014b) Evaluation of cold environments: field measurements and subjective analysis. Ind Health 52(3):262–274

    Article  Google Scholar 

  • Ozaki H, Enomoto-Koshimizu H, Tochihara Y, Nakamura K (1998) Thermal responses from repeated exposures to severe cold with intermittent warmer temperatures. J Physiol Anthropol Appl Human Sci 17:195–205. doi:10.2114/jpa.17.195

    Article  CAS  Google Scholar 

  • Piedrahita H, Oksa J, Malm C, Sormunen E, Rintamäki H (2008a) Effects of cooling and clothing on vertical trajectories of the upper arm and muscle functions during repetitive light work. Eur J Appl Physiol 104:183–191. doi:10.1007/s00421-007-0657-7

    Article  Google Scholar 

  • Piedrahita H, Oksa J, Malm C, Rintamäki H (2008b) Health problems related to working in extreme cold conditions indoors. Int J Circumpolar Health 67(2–3): 279–287. http://pure.ltu.se/portal/files/1934166/20Piedrahita.pdf

  • Piedrahita H, Oksa J, Rintamäki H, Malm C (2009) Effect of local leg cooling on upper limb trajectories and muscle function and whole body dynamic balance. Eur J Appl Physiol 105:429–438. doi:10.1007/s00421-008-0920-6

    Article  Google Scholar 

  • Quintela DA, Gaspar AR, Borges C (2004) Analysis of sensible heat exchanges from a thermal manikin. Eur J Appl Physiol 92:663–668. doi:10.1007/s00421-004-1132-3

    Article  Google Scholar 

  • Raimundo AM, Figueiredo AR (2006) Human thermophysiological response to high intensity radiation fluxes near a forest fire line. ICFFR 2006 (5th International Conference on Forest Fire Research), Figueira da Foz, Portugal, pp S145 (1–16)

  • Raimundo AM, Figueiredo AR (2009) Personal protective clothing and safety of firefighters near a high intensity fire front. Fire Saf J 44:514–521. doi:10.1016/j.firesaf.2008.10.007

    Article  Google Scholar 

  • Raimundo AM, Gaspar AR, Quintela DA (2004) Numerical modelling of radiative exchanges between the human body and surrounding surfaces. Climamed 2004 – 1st Mediterranean congress of climatization, 16–17 of April, Lisbon, Portugal, paper 8/1

  • Raimundo AM, Oliveira AVM, Gaspar AR, Quintela DA (2008) Thermophysiological response of human beings working in cold thermal environments. 7i3m – 7th International Thermal Manikin and Modelling Meeting, 3–5 of September, Coimbra, Portugal, pp 1–11

  • Rintamäki H, Rissanen S (2006) Heat strain in cold. Ind Health 44:427–432. doi:10.2486/indhealth.44.427

    Article  Google Scholar 

  • Rissanen S, Rintamäki H (1997) Thermal responses and physiological strain in men wearing impermeable and semipermeable protective clothing in the cold. Ergonomics 40:141–150. doi:10.1080/001401397188260

    Article  CAS  Google Scholar 

  • Sandsund M, Reinertsen RE, Holand B, Bjermer L (2007) Thermoregulatory and respiratory responses in asthmatic and nonasthmatic subjects breathing cold and warm air during exercise in the cold. J Therm Biol 32:246–254. doi:10.1016/j.jtherbio.2006.12.002

    Article  Google Scholar 

  • Stolwijk JAJ (1971) A mathematical model of physiological temperature regulation in man. NASA contractor report CR-1855. NASA, Washington DC

    Google Scholar 

  • Tanabe S, Kobayashi K, Nakano J, Ozeki Y, Konishi M (2002) Evaluation of thermal comfort using combined multi-node thermoregulation (65MN) and radiation models and computational fluid dynamics (CFD). Energy Build 34:637–646. doi:10.1016/S0378-7788(02)00014-2

    Article  Google Scholar 

  • Tochihara Y, Ohkubo C, Uchiyama I, Komine H (1995) Physiological reaction and manual performance during work in cold storages. J Physiol Anthropol Appl Human Sci 14(2):73–77

    CAS  Google Scholar 

  • Xu X, Tikuisis P, Gonzalez R, Giesbrecht G (2005) Thermoregulatory model for prediction of long-term cold exposure. Comput Biol Med 35:287–298. doi:10.1016/j.compbiomed.2004.01.004

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Raimundo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raimundo, A.M., Oliveira, A.V.M., Gaspar, A.R. et al. Thermal conditions in freezing chambers and prediction of the thermophysiological responses of workers. Int J Biometeorol 59, 1623–1632 (2015). https://doi.org/10.1007/s00484-015-0969-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00484-015-0969-y

Keywords

Navigation